| 研究生: |
許媛婷 Hsu, Yuan-Ting |
|---|---|
| 論文名稱: |
Sn-Ag-Sb-xIn無鉛銲料接點微結構與低週疲勞之研究 The Microstructure and Low Cycle Fatigue of Sn-Ag-Sb-xIn Lead-Free Solder Joints |
| 指導教授: |
李驊登
Lee, Hwa-Teng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | Ag2In 、無鉛銲料 、低週疲勞 、Sn-Ag-Sb-In |
| 外文關鍵詞: | Ag2In, low cycle fatigue, lead-free solder, Sn-Ag-Sb-In |
| 相關次數: | 點閱:165 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究目的在於探討添加1~10 wt% In元素對Sn-3Ag-2Sb無鉛銲料熔點及微結構的影響,並進行150 ˚C高溫熱儲存試驗以評估銲料等溫低週疲勞之可靠度表現。
將自製銲料Sn-3Ag-2Sb-xIn(x=1,5,10 wt%)製成直徑約1.15 mm之錫球,與Cu基板銲接成單點剪切試件,之後再進行150 ℃高溫儲存處理,熱儲存時間分別為225、625小時。實驗結果顯示添加In入銲料可以有效的降低熔點,由Sn-3Ag-2Sb的223.1 ℃下降至192.9℃(10 wt% In),且固液相區間亦隨之擴大。微結構方面,Sn-3.5Ag以及Sn-3Ag-2Sb銲料組成皆為Ag3Sn與β-Sn所組成之網狀共晶組織。添加1 wt% In銲料中之In元素會取代Ag3Sn中的Sn元素而形成Ag3(Sn, In);含量提高至5 wt%則會形成Ag2(In, Sn)與深色化合物InSb;In高達10 wt%時Ag2(In, Sn)成份中的In元素比例將會提高,且InSb化合物數量會增加。然而於5、10 wt% In銲料當中並無發現Ag3Sn化合物。其中InSb化合物呈現二種形貌-板狀及團塊狀析出物,另外一種化合物Ag2(In,Sn),其形貌為不規則塊狀。
等溫低週疲勞測試中,在±0.020 mm位移量下,銲點剪切強度隨著In含量提高而上升,由Sn-3Ag-2Sb共晶銲料的42.3 N上升為46.7 N(1 wt%)、70.0 N(5 wt%)、80.4 N(10 wt%),未經熱儲存之銲點疲勞壽命大致上隨In的添加而增加,10 wt% In有較佳的疲勞壽命,因銲接點之塑性應變量隨著In的添加而減少,塑性應變愈少則會有較佳的疲勞壽命,而最大荷重下降速率也隨著In的添加而增加。銲點經過熱儲存後,由於銲料軟化會導致破斷韌性提高,故1 wt% In銲點之疲勞壽命會較剛銲接條件下之試件來的高,但是隨著熱儲存時間延長,界面金屬層Cu6Sn5成長會逐漸增厚,故5、10 wt% In銲料會因銲點破壞模式由銲料內部演變成銲料與界面的混合模式,最後再轉變成界面破斷模式,此時疲勞壽命將會減少。
關鍵字:無鉛銲料、Ag2In、低週疲勞、Sn-Ag-Sb-In
The goal of this research is to evaluate the effect of In additions (0~10 wt%) on the melting point and microstructure of Sn-Ag-2Sb lead-free solder. The reliability of low cycle fatigue of the solder joint is estimated by the thermal storage test for 150˚C.
Sn-3Ag-2Sb-xIn in form of solder balls with 1.15 mm in diameter are fabricated. Solder balls were re-flowed with Cu substrate in the form of single lap shear specimen, and then annel in 150℃for 225 and 625 hours, respectively. Experimental result show the melting points of Sn-Ag-Sb-xIn solder are decreased with higher In additions. The melting points are 223.1℃(Sn-3Ag-2Sb) and 192.9℃(10 wt% In). The range between solidus and liquidus pasty will expand with the addition of indium. Microstructures of the Sn-3.5Ag and Sn-3Ag-2Sb solders are similar and can be characterized as consisting of β-Sn dendrite and interdenritic eutectic network. In atoms are almost solved in the β-Sn when adding 1 wt% In into the Sn-Ag-Sb solder, and In atoms may replace Sn of Ag3Sn compounds to be Ag3(Sn,In). The Ag2(In,Sn) and InSb compounds are observed as the content of In addition increased to 5 wt%. For Sn-3Ag-2Sb-10In, the percentage of indium in Ag2(In,Sn) compounds is increased, and the amount of InSb is increased. Ag3Sn compounds aren’t found in 5 wt%In and 10 wt%In solders. From the 3-D observations of Sn-Ag-Sb-In solder, the morphology of InSb can be concluded to two types : plate-like and piece-like, but the shapes of Ag2(In,Sn) compounds’ cannot be determined.
In the condition with constant displacement of 0.020mm, shear strength of the as-soldered joints is increased with higher In additions. The shear strengths are 42.3 N(Sn-3Ag-2Sb), 46.7 N(1 wt% In), 70.0 N(5 wt% In) and 80.4 N(10 wt% In). Fatigue life of the as-soldered joint approximately increases with greater In additions, and 10 wt% In solder has better fatigue life. The reason is the plastic strain of the solder joint decreases with higher In additions. The lesser plastic strain the better fatigue life and the rate of load-drop is increased with higher In additions. After 150˚C thermal storage, fatigue life will improve because of the softening of solder joints. So the fatigue life of 1 wt% In solder joints are higher than as-soldered. The thickness of the Intermetallic Compound(IMC) are also increased after thermal storage. The fracture modes of 5、10 wt% In solder joint transit from solder fracture mode to mixture mode then into IMC fracture mode with increasing indium additions and storage time. In the meanwhile, fatigue life would be decreased.
Key word:lead-free solder、Ag2In、low cycle fatigue、Sn-Ag-Sb-In
1. 張淑如, "鉛對人體的危害", 勞工安全衛生簡報,第12期,勞工安全衛生研究所, 1995
2. http://www.itri.org.tw/weo/01-02-2002/reports/05.htm
3. ESPEC Technology Report No.13, pp.1-8, 2002
4. Laura J. Turbini, Gregory C. Munie, Dennis Bernier, Jurgen Gamalski, and David W. Bergman, "Examining the Evironmental Impact of Lead-Free Soldering Alternatives", IEEE Transactions on Electronics Packaging Manufactureing , Vol. 24, No.1, pp.4-9, January 2001
5. David Suraski and Karl Seelig, "The Current Status of Lead-Free Solder Alloys", IEEE Transactions on Electronics Packaging Manufactureing , Vol. 24, No.4, pp.224-248 Octobor 2001
6. 編輯室,"無鉛焊接的開發動向", 電子與材料, 第一期, pp.78-84, 1999
7. S. Choi, T. R. Bieler, J. P. Lucas and et al. "Characterization of The Groth of Intermetallic Interfacial Layers of Sn-Ag and Sn-Pb Eutectic Solders and Their Composite Solders on Cu Substrate during Isothermal Long-Term Aging", Journal of Electronic Materials, Vol.29, No.12, pp1205-1209, 1999
8. 鄭壽昌、陳剛毅、鄭建章、范志銘, "銲錫合金之無鉛化勢趨及其相關性質", 銲接與切割, 第16卷第1期, pp.18-29, 2006.3.
9. 黃家緯、林光隆, 銲接與切割,第13卷第2期,pp.19-26, 2004
10. 李政賢, "Sn-Ag-xSb無鉛錫銲接點微結構與低週疲勞之研究", 國立成功大學機械研究所, 碩士論文, 2003
11. Anton Zoran Miric and Angela Grusd, "Lead-free Alloys," Soldering & Surface Mount Technology, Vol. 10, No. 1, pp. 19-25, 1998
12. Yoshiharu Kariya and Masahisa Otsuka, "Mechanical Fatigue Characteristics of Sn-3.5Ag-X(X = Bi,Cu,Zn and In) Solder Alloys", Journal of Electronic Materials, Vol.27 No.11, pp.1229-1235, 1998
13. Igoshev, V.I., Kleiman, J.I., Shangguan, D., Lock, C., Wong, S., Wiseman, M. "Microstructure changes in Sn-3.5Ag solder alloy during creep", Journal of Electronic Materials, Vol.27, pp.1367-1371, 1998
14. Won Kyoung Choi and Hyuck Mo Lee, "Effect of soldering and Aging Time on Interfacial Microstructure and Growth of Intermetallic Compounds between Sn-3.5Ag Solder Alloy and Cu Substrate", Journal of Electronic Materials, Vol.29, No.10, pp1207-1213, 2000
15. 劉家明, 高振宏, "Ni與96.5Sn-3.5Ag無鉛銲料反應生成介金屬機制之探討", 1999材料年會論文集, 台灣, 新竹, 工研院, 1999.12
16. Wenge Yang, Lawwrence E. Felton, Robert W. Messler, JR. "The Effect of Soldering Process Variable on the Microstructure and Mechanical Properties of Eutectic Sn-Ag/Cu Solder Joints", Journal of Electronic Materials, Vol.24, Issue 10, pp.1465-1472, 1995
17. S. Chada, R. A. Fournelle, W. Laub and D. Shangguan, "Copper Substrate Dissolution in Eutectic Sn-Ag Solder and its Effect on Microstructure", Journal of Electronic Materials, Vol. 29, Issue 10, pp.1214-1221, 2000
18. K. Zeng, K.N. Tu, "Six Case of reliability Study of Pb-free Solder Joient in Electronic Packaging Technology ", Materials Science and Engineering R, Vol. 38, pp.55-105, 2002
19. Igoshev, V.I.; Kleiman, J.I.; Shangguan, D.; Lock, C.; Wong, S.; Wiseman, M. "Microstructure changes in Sn-3.5Ag solder alloy during creep", Journal of Electronic Materials, Vol.27, pp.1367-1371, 1998
20. Freer, J.L.; Morris, J.W. Jr, "Microstructure and creep of eutectic indium/tin on copper and nickel substrates", Journal of Electronic Materials, Vol.21, pp.647-652, 1992
21. Sung K. Kang and Amit K. Sarkhel, "Lead(pb)-Free Solders for Electronic Packaging", Journal of Electronic Materials, Vol.23 No.8, pp.701-707, 1994
22. Indium corporation of America, Utica, NY 13503
23. W. J. Tomlinson and I. Collier, "The mechanical properties and microstructure of copper and brass joints soldered with eutectic tin-bismuth solder", Journal of Materials Science, 22, pp.1835-1839, 1987
24. L. E. Felton, C. H. Raeder, and D. B. Knorr, "The Properties of Tin-Bismuth Alloy Solders", JOM, pp28-32, July 1993
25. W. J. Tomlinson and I. Collier, "The mechanical properties and microstructure of copper and brass joints soldered with eutectic tin-bismuth solder", Journal of Materials Science, 22, pp.1835-1839, 1987
26. L. E. Felton, C. H. Raeder, and D. B. Knorr, "The Properties of Tin-Bismuth Alloy Solders", JOM, pp28-32, July 1993
27. Z. Mei and J. W. Morris, Jr. "Characterization of eutectic Sn-Bi solder joints", Journal of Electronic Materials, Vol.21, No.6, pp.599-607,1992
28. C.H. Raeder, L. E. Felton V. A. Tanzi, and D. B. Knorr, "The effect of aging on microstructure, room temperature deformation, and fracture of Sn-Bi/Cu solder joints", Journal of Electronic Materials, Vol.23, No.7, pp.611-617, 1994
29. 梁元彰, "無鉛焊錫合金概論", 電腦與通訊期刊, Vol.90, 2000
30. Jeong-Won Yoon, Seung-Boo Jung, "Reliability studies of Sn–9Zn/Cu solder joints with aging treatment", Journal of Alloys and Compounds 407 pp.141–149, 2006
31. X.Q. Shi, H.L.J. Pang, W. Zhou and Z.P. Wang, "Low cycle fatigue analysis of temperature and frequency effects in eutectic solder alloy", International Journal of Fatigue, Vol. 22, pp. 217-228, 2000
32. 王照中, "電子產品之溫度循環試驗規範簡介", 電子檢測與品管, No.42, pp.44-48, 2000.4
33. Alloy Phase Diagrams, ASM handbook, Vol. 3, 1990
34. Jenn-Ming Song and Kwang-Lung Lin, "Double peritectic behavior of Ag–Zn intermetallics in Sn–Zn–Ag solder alloys", Journal of Materials Research, Vol. 19, No.9, September, p 2719-2724, 2004
35. M. McCormack, S. Jin, G. W. Kammlott, and H. S. Chen, "New Pb-free Solder Alloy with Superior Mechanical Properties," Applied Physics Letter, Vol.63, No.1, pp.15-17, 1993.7
36. Masahide Harada and Ryoohei Satoh, "Mechanical Charactristics of 96.5Sn/3.5Ag Solder on Microbonding", IEEE transactions on components, hybrids, and manufacturing technology, Vol. 13, NO. 4, 1990
37. T.Y. Lee, W.J. Choi, and K.N. Tu, "Morphology, Kinetics, and Thermodynamics of Solid-state Aging of Eutectic SnPb and Pb-free solders (Sn-3.5Ag, Sn-3.8Ag-0.7Cu and Sn-0.7Cu) on Cu", Journal of Materials Research, Vol.17, No.2, pp.291-301, 2002
38. Yeh, M. S. "Effects of indium on the mechanical properties of ternary Sn-In-Ag solders", Journal of Electronic Materials, Vol. 29, No.12, Dec, pp. 1356-1361, 2000
39. T. H. CHUANG, K. W. HUANG, and W. H. Lin, "Mechanisms for the intermetallic Formation during the Sn-20In-2.8Ag/Ni Soldering Reactions", Journal of Electronic Materials, Vol. 33, No. 4 , pp.374-381, 2004
40. P. T. Vianco and J. A. Rejent, "Properties of ternary Sn-Ag-Bi solder alloys: Part II - thermal properties and microstructural analysis", J. Electron. Mater. Vol.28, pp.1138-1142, 1999
41. P. T. Vianco and J. A. Rejent , "Properties of ternary Sn-Ag-Bi solder alloys: Part I - thermal properties and microstructural analysis", Journal of Electronic Materials, Vol.28, pp.1138-1142, 1999
42. Y. Kariya, Y. Hirata, and M. Otsuka, "Effect of thermal cycles on the mechanical strength of quad flat pack leads/Sn-3.5Ag-X (X = Bi and Cu) solder joints", Journal of Electronic Materials, Vol.28, pp.1263-1269, 1999
43. Chi-Won Hwang, Katsuaki Suganuma, "Joint reliability and high temperature stability of Sn-Ag-Bi lead-free solder with Cu and Sn-Pb/Ni/Cu substrates", Materials Science and Engineering A373 pp.187-194, 2004
44. Jeong-Won Yoon, Sang-Won Kim, Seung-Boo Jung, "IMC morphology, interfacial reaction and joint reliability of Pb-free Sn–Ag–Cu solder on electrolytic Ni BGA substrate", Journal of Alloys and Compounds 392, pp. 247–252, 2005
45. Y. Kariya and M. Otsuka, "Mechanical fatigue characteristics of Sn-3.5Ag-X (x = Bi, Cu, Zn and In) solder alloys", Journal of Electronic Materials, pp.1229-1233, 1998
46. John H. L.. Pang, B.S. Xiong, T. H. Low, "Low cycle fatigue models for lead-free solders", Thin Solid Films 462-463, pp.408-412, 2004
47. P.G. Kim and K.N. Tu, "Fast Dissolution and Soldering Reactions on Au Foils", Material Chemistry and Phyicals, Vol.53, pp.165-171, 1998
48. 廖天龍, "添加Sb對Sn-Ag無鉛銲料之銲點剪切強度研究", 國立成功大學機械研究所, 碩士論文, 2001.6
49. 楊傳鏈, "添加Sb對Sn-Ag無鉛銲料銲點微結構與剪切強度之影響", 國立成功大學機械研究所, 碩士論文, 2002
50. 胡順源, "Sn-Ag-xSb無鉛錫銲接點與Au/Ni-P/Cu金屬層之界面微結構與剪切強度研究", 國立成功大學機械研究所, 碩士論文, 2003
51. 陳柏瑋, "Sn-Ag-xSb無鉛錫銲與Cu及Cu/Ni-P/Au金屬層基板銲接點微結構與低週疲勞之研究", 國立成功大學機械研究所, 碩士論文, 2004.6
52. 宋立文, "冷卻速率及Cu/Ni-P/Au金屬層對Sn-Ag-xSb無鉛錫銲接點之剪切強度特性與界面微結構的影響", 國立成功大學機械研究所,碩士論文, 2004.6
53. John H. L. Pang, Kwang Hong Tan, Xunqing Shi and Z. P. Wang, "Thermal Cycling Aging Effects on Microstructural and Mechanical Properties of a Single PBGA Solder Joint Specimen", IEEE Transactions on Components and Packaging Technologies, Vol.24, No.1, pp. 10-15, March 2001
54. Z. Guo, H. Conrad, "Fatigue Crack Growth Rate in 63Sn37Pb Solder Joints", Journal of electronic Packaging, Vol. 115, pp.159-164, 1993.6
55. X. Q. Shi, H. L. J. Pang, W. Zhou and Z. P. Wang, "Low Cycle Fatigue Analysis of Temperature and Frequency Effects in Eutectic Solder Alloy", International Journal of Fatigue, Vol. 22, pp.217-228, 2000
56. H. D. Solomon, "The Influence of the Cycle Frequency and Wave Shape on the Fatigue Life of Leaded Chip Carrier Printed Wiring Board Interconnections", Journal of Electronic Packaging, Vol. 115, pp.173-179, June 1993
57. C. Kanchanomai, Y. Miyashita, T. Mutoh, S. L. Mannan, "Influence of frequency on low cycle fatigue behavior of Pb-free solder 96.5Sn-3.5Ag", Materials Science and Engineering, A345, pp. 90-98, 2003
58. 陳明宏,李驊登,饒慧美,廖天龍, "界面金屬間化合物對錫銲接點破壞行為之影響", 第七屆破壞科學研討會, 墾丁福華, 2002
59. K.YoKomine, N. Shimizu, Y. Miyamoto, Y. Iwata, D.Love and K.Newman, "Development of Electroless Ni/Au Plated Build-Up Flip Chip Package with Highly Reliable Solder Joints", 2001 Electronic Components and Technology Conference, 2001
60. Xingsheng Liu, Shuangyan Xu, G.Q. Lu, David A. Dillard, "Stacked Solder bumping Technology for Improved Solder Joint Reliability", Microelectronics Reliability, Vol.41, pp.1979-1992, 2001
61. 饒慧美, "Effects of Ceramic Ball-Grid-Array Package's Manufacturing Variations on Solder Joint Reliability", 國立成功大學機械研究所,碩士論文, 2000.6
62. Jie Zhao , Yoshiharu Mutoh , Yukio Miyashita , Lai Wang , "Fatigue crack growth behavior of Sn–Pb and Sn-based lead-free solders", Engineering Fracture Mechanics 70, pp. 2187–2197, 2003
63. ASTM E606-92
64. H. D. Solomon, "Low Cycle Fatigue of Sn96 Solder with Reference to Eutectic Solder and a High Pb Solder," Transactions of the ASME, Journal od Electronic Packaging, Vol.113, pp.102-108, 1991
65. Yoshiharu Kariya and Masahisa Otsuka, "Mechanical Fatigue Characteristics of Sn-3.5Ag-X(X=Bi, Cu, Zn and In) Solder Alloys," Journal of Electronic Materials, Vol.27, Issue 11, pp.1229-1235, 1998
66. C. Kanchanomai, Y. Miyashita and Y. Mutohm, "Low-Cycle Fatigue Behavior and Mechanisms of a Lead-Free Solder 96.5Sn/3.5Ag," Journal of Electronic Materials, Vol. 31, Issue 2, pp.142-151, 2002.2
67. C. Kanchanomai, S. Yamamoto, Y. Miyashita, Y. Mutoh, and A.J. McEvily, "Low Cycle Fatigue Test for Solders Using Non-contact Digital Image Measurement System," International Journal of Fatigue, Vol. 24, pp.57-67, 2002
68. H. Jiang, R. Hermann, W. J. Plumbridge, "High-Strain Fatigue of Pb-Sn Eutectic Solder Alloy," Journal of Materials Science, Vol.31, pp.6455-6461, 1996
69. C. Kanchanomai, Y. Miyashita, and Y. Mutoh, "Low cycle fatigue behavior and mechanisms of a eutectic Sn-Pb sodler 63Sn/37Pb," International Journal of Fatigue, Vol. 24, pp. 671-683, 2002
70. 成功大學X-ray粉末繞射電子資料庫
71. T. H. Chuang, K. W. Huang, and W. H. Lin, "Mechanisms for the intermetallic Formation during the Sn-20In-2.8Ag/Ni Soldering Reactions", Journal of Electronic Materials, Vol. 33, No. 4, pp.374-381, 2004
72. 黃于恬 , "Mechanisms for the intermetallic Formation during the Sn-20In-2.8Ag/Ni Soldering Reactions", 國立臺灣大學材料科學與工程學研究所,碩士論文,1999
73. T.H. Ju, Wei Lin, Y.C. Lee and Jay J. Liu, "Effects of Ceramic Ball-Grid-Array Package's Manufacturing Variations on Solder Joint Reliability", Journal of Electronic Packaging, Vol. 116, pp. 242-248, 1994
74. E.C. Cutiongco, S. Vaynman, M.E. Fine and D.A. Jeannotte, "Isothermal Fatigue of 63Sn-37Pb Solder", Journal of Electronic Packaging, Vol. 112, pp. 110-114, 1990