簡易檢索 / 詳目顯示

研究生: 陳達德
Chen, Ta-Te
論文名稱: 具混合導性之鋇鍶鈷鐵氧化物 (BaxSr1-xCoyFe1-yO3-δ)結構/電化學性質與厚膜設計應用於氧傳輸薄膜之研究
Structural/Electrochemical Properties and Thick-Film Design of BaxSr1-xCoyFe1-yO3-δ Mixed Ionic/Electronic Conductor for Oxygen Transport Membrane (OTM) Application
指導教授: 方冠榮
Fung, Kuan-Zong
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 61
中文關鍵詞: 氧傳輸薄膜鈣鈦礦結構混合導性厚膜設計
外文關鍵詞: Oxygen transport membrane, perovskite oxide, mixed ionic/electronic conductor, thick-film design
相關次數: 點閱:96下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Ba0.5Sr0.5Co0.8Fe0.2O3-δ ¬是目前備受矚目的混和離子/電子導體材料,由於其高離子導性與相對穩定的晶體結構,在中溫固態氧化物燃料電池與氧傳輸薄膜的應用上都開始有相關的研究。
    本研究首先藉由X光繞射光譜分析BaxSr1-xCoyFe1-yO3-δ (x=0~1, y=0~1)的晶體結構隨著組成的變化,在x=0時,SrCo0.8Fe0.2O3-δ 從繞射光譜中可看出其晶體結構主要是正方晶相鈣鈦礦結構,但第二相SrCoO2.8的生成顯示其結構的不穩定性。¬¬¬¬¬而在x=0.2 to 0.8時其晶體結構皆為正方晶相鈣鈦礦結構而且其繞射峰角度隨著鋇摻雜量的增加而向低角度偏移,這顯示出了晶體隨著鋇的摻雜而膨脹。而當鋇的摻雜量超過60%時,BaxSr1-xCo0.8Fe0.2O3-δ 將無法維持單一正方晶相鈣鈦礦結構而相轉變成同為正方晶相的BaFeO3、斜方晶相的BaCoO2.7以及SrFe2O4,而當x=1時,由繞射光譜可知其主要結構為六方晶相的BaFeO2.9 以及Co3O4。而Ba0.5Sr0.5CoyFe1-yO3-δ 在y=0~0.8時皆顯示為正方晶相鈣鈦礦結構,但在y=1時則相轉變為氧空缺有序排列的2-H型六方晶相。
    本次研究利用四線式電阻量測法測量BaxSr1-xCoyFe1-yO3-δ (x=0.2~0.8, y=0~0.8)於空氣中的導電性質,BaxSr1-xCo0.8Fe0.2O3-δ (x=0.2~0.8)的導電率隨著鋇的摻雜量增加而減少,這是由於因為被摻雜導致的晶體結構擴張阻礙了導電粒子的傳輸進而造成了導電率的下降。而Ba0.5Sr0.5CoyFe1-yO3-δ (y=0~0.8)的導電率在低於400℃時呈現p型半導體的導電特性,隨著溫度的升高而增加(活化能:0.248-0.346eV),而在高於400℃後導電率開始隨著溫度升高而降低,而這主要是因為結構中四價的鐵離子的價數被還原並伴隨著氧空缺的生成,而導致帶電粒子濃度的下降。藉由這些量測可以更加的了解在不同的結構與溫度下BaxSr1-xCoyFe1-yO3-δ的導電機制。
    Ba0.5Sr0.5Co0.8Fe0.2O3-δ的氧傳輸性質在600到900℃的區間量測,厚度800微米的Ba0.5Sr0.5Co0.8Fe0.2O3-δ氧傳輸薄膜在900℃氧分壓差分別為po2=0.21跟1時可以達到1.196和4.223ml/min-cm2。而為了要減少薄膜的厚度,本次研究利用刮刀成形法製備非對稱型結構的氧傳輸薄膜,包含了約40μm厚的氣密膜披覆在同材質的多孔性基材上,以漸少傳輸薄膜的厚度並維持其強度,非對稱薄膜於900℃時的氧傳輸量可達2.726 ml/min-cm2,而為了更進一步的提升非對稱薄膜的氧傳輸量,在非對稱薄膜的表面上再以刮刀成形製備一層Ba0.5Sr0.5Co0.8Fe0.2O3-δ催化層,以提升表面氧離子吸脫附的速率,而包含厚約9.11微米催化層的非對稱薄膜其氧傳輸量在900℃時可達5.43ml min-cm2,分別比單一結構厚膜與無催化層之非對稱膜提升99.19% 和354.01%.

    Ba0.5Sr0.5Co0.8Fe0.2O3-δ, denoted as BSCF, is a well-known mixed ionic/electronic conductor (MIEC) due to the potential on the applications as a cathode material of the intermediate temperature solid oxide fuel cells (IT-SOFCs) and oxygen transport membranes (OTMs). The crystal structures of the BaxSr1-xCoyFe1-yO3-δ (x=0~1, y=0~1) had been investigated by the X-ray diffraction patterns. When x=0, the SrCo0.8Fe0.2O3-δ shows unstable crystal structure with additional peaks of tetragonal SrCoO2.8 and the primary phase is cubic perovskite. When x=0.2 to 0.6, there all showed the cubic perovskite structures and peaks shifted to lower diffraction angles with the increasing amount of Ba suggested the expansion of crystal. When the x exceeds 0.6, the structure cannot maintain the single cubic perovskite due to the larger ionic radius of Ba2+ (1.61Å) and transferred into the cubic perovskite BaFeO3, orthorhombic BaCoO2.7 and SrFe2O4 structure. The XRD pattern shows mainly hexagonal BaFeO2.9 and Co3O4 in the composition of x=1. The diffraction pattern of y=0~0.8 shows the cubic perovskite structure and the structure become oxygen vacancy-ordered 2-H type hexagonal phase with y=1.
    The conductivity of BaxSr1-xCoyFe1-yO3-δ (x=0.2~0.8, y=0~0.8) had been measured by 4-point conductivity measurements in air with silver-paste as electrodes. The conductivity decreased with the increasing of Ba dopant which is because the expansion of the crystal structure impeded the transport of charge carriers. Below 400℃, the conductivity of Ba0.5Sr0.5CoyFe1-yO3-δ (y=0~0.8) was thermal activated (Ea= 0.248-0.346 eV) and the conductivity decreased with increasing temperature above 400℃, which was attributed to the decrease in p-type carriers resulted by the reduction of Fe4+ associated with the formation of oxygen vacancies. These measurements enable better understanding of the conduction mechanism of BSCF according to the changes of composition and temperatures.
    The oxygen permeation flux of Ba0.5Sr0.5Co0.8Fe0.2O3-δ was 1.196 and 4.223 ml/min cm2 with pO2=0.21 and pO2=1 at 900℃ with membrane thickness of 800μm. The asymmetric structure, which is consistent with 40μm gas-tight layer on 300μm porous substrate with the same material Ba0.5Sr0.5Co0.8Fe0.2O3-δ, had been fabricated by tape casting method to minimize the thickness of oxygen transport membrane. The oxygen permeation of asymmetric membrane was 2.726 ml/min cm2 at 900℃. To further improve the property of oxygen permeation, a Ba0.5Sr0.5Co0.8Fe0.2O3-δ catalytic layer had been fabricated on the surface of asymmetric membrane and the membrane with 9.11μm catalytic layer achieved the best results to 5.43 ml/cm2min with pO2=0.21 at 900℃ which is 99.19% and 354.01% higher than the bare asymmetric membrane and symmetric membrane.

    中文摘要 I Abstract III 致謝 V TABLE OF CONTENTS VI List of Tables IX List of Figures X Chapter1 Introduction 1 Chapter2 Literature Review 3 2.1 Crystal structure and phase stability of BSCF 3 2.2 Oxygen non-stoichiometry and valence of cations in BSCF 6 2.3 Electrical Properties of BSCF 8 2.4 The oxygen permeation behavior of BSCF 12 2.5 The technical application of BSCF 13 2.6 Motivation and Objective 14 Chapter3 Experimental Procedures 16 3.1 The synthesis of BaxSr1-xCoyFe1-yO3-δ powder 16 3.2 Tape Casting 16 3.3 Sintering 17 3.4 Density Measurements 17 3.5 X-ray Diffraction 18 3.6 Scanning Electronic Microscopy 18 3.7 Electrical Measurements 18 3.8 Oxygen Stoichiometry Measurements 19 3.9 Oxygen permeation measurements 20 Chapter4 Results and Discussion 22 4.1 The crystal structure of BaxSr1-xCoyFe1-yO3-δ (x=0~1, y=0~1) 22 4.1.1 The effect of Ba-substitution on the crystal structure of BaxSr1-xCo0.8Fe0.2O3-δ (x=0~1) 22 4.1.2 The effect of Co-substitution on the crystal structure of Ba0.5Sr0.5CoyFe1-yO3-δ (y=0~1) 26 4.2 The electrical conductivity of BaxSr1-xCoyFe1-yO3-δ (x=0.2~0.8, y=0~0.8) 29 4.2.1 The effect of Ba-substitution on the electrical conductivity of BaxSr1-xCo0.8Fe0.2O3-δ (x=0~0.8) 29 4.3 The effect of Co-substitution on the electrical conductivity of Ba0.5Sr0.5CoyFe1-yO3-δ (y=0~0.8) 31 4.4 The Oxygen permeation behavior of Ba0.5Sr0.5Co0.8Fe0.2O3-δ as oxygen transport membrane 34 4.5 The microstructure of oxygen transport membrane 34 4.5.1 The Oxygen permeation flux of Ba0.5Sr0.5Co0.8Fe0.2O3-δ 45 Chapter5 Conclusion 53 Chapter6 Reference 55

    [1] M. Czyperek et al., "Gas separation membranes for zero-emission fossil power plants: MEM-BRAIN," Journal of membrane science, vol. 359, no. 1, pp. 149-159, 2010.
    [2] J. Sunarso et al., "Mixed ionic–electronic conducting (MIEC) ceramic-based membranes for oxygen separation," Journal of Membrane Science, vol. 320, no. 1, pp. 13-41, 2008.
    [3] J. F. Vente, S. McIntosh, W. G. Haije, and H. J. Bouwmeester, "Properties and performance of Ba x Sr 1− x Co 0.8 Fe 0.2 O 3− δ materials for oxygen transport membranes," Journal of Solid State Electrochemistry, vol. 10, no. 8, pp. 581-588, 2006.
    [4] J. Ovenstone, J.-I. Jung, J. S. White, D. D. Edwards, and S. T. Misture, "Phase stability of BSCF in low oxygen partial pressures," Journal of Solid State Chemistry, vol. 181, no. 3, pp. 576-586, 2008.
    [5] Z. Shao, "Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ oxygen membrane," Journal of Membrane Science, vol. 172, no. 1-2, pp. 177-188, 2000.
    [6] J.-I. Jung, S. T. Misture, and D. D. Edwards, "The electronic conductivity of Ba0.5Sr0.5Co x Fe1−x O3−δ (BSCF: x = 0 ∼ 1.0) under different oxygen partial pressures," Journal of Electroceramics, vol. 24, no. 4, pp. 261-269, 2009.
    [7] R. Vasquez, M. Siegal, D. Overmyer, Z. Ren, J. Lao, and J. Wang, "Chemical bonding in Tl cuprates studied by x-ray photoemission," Physical Review B, vol. 60, no. 6, p. 4309, 1999.
    [8] B. Liu, Y. Zhang, and L. Tang, "X-ray photoelectron spectroscopic studies of Ba0.5Sr0.5Co0.8Fe0.2O3−δ cathode for solid oxide fuel cells," International Journal of Hydrogen Energy, vol. 34, no. 1, pp. 435-439, 2009.
    [9] S. McIntosh, J. Vente, W. Haije, D. Blank, and H. Bouwmeester, "Structure and oxygen stoichiometry of SrCo0.8Fe0.2O3−δ and Ba0.5Sr0.5Co0.8Fe0.2O3−δ," Solid State Ionics, vol. 177, no. 19-25, pp. 1737-1742, 2006.
    [10] P. Zeng, Z. Chen, W. Zhou, H. Gu, Z. Shao, and S. Liu, "Re-evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite as oxygen semi-permeable membrane," Journal of Membrane Science, vol. 291, no. 1-2, pp. 148-156, 2007.
    [11] J. Gonzalez-Calbet, M. Parras, M. Vallet-Regi, and J. Grenier, "Nonstoichiometry in BaFeO 3− y (0.35< y< 0.50)," Journal of Solid State Chemistry, vol. 86, no. 2, pp. 149-159, 1990.
    [12] S. McIntosh, J. F. Vente, W. G. Haije, D. H. Blank, and H. J. Bouwmeester, "Oxygen stoichiometry and chemical expansion of Ba0. 5Sr0. 5Co0. 8Fe0. 2O3-δ measured by in situ neutron diffraction," Chemistry of materials, vol. 18, no. 8, pp. 2187-2193, 2006.
    [13] S. McIntosh, J. F. Vente, W. G. Haije, D. H. Blank, and H. J. Bouwmeester, "Phase stability and oxygen non-stoichiometry of SrCo 0.8 Fe 0.2 O 3− δ measured by in situ neutron diffraction," Solid State Ionics, vol. 177, no. 9, pp. 833-842, 2006.
    [14] P. V. Hendriksen, P. H. Larsen, M. Mogensen, F. W. Poulsen, and K. Wiik, "Prospects and problems of dense oxygen permeable membranes," Catalysis Today, vol. 56, no. 1, pp. 283-295, 2000.
    [15] G. C. Kostogloudis, P. Fertis, and C. Ftikos, "The Perovskite Oxide System Pr 1− x Sr x Co 1− y Mn y O 3-δ: Crystal Structure and Thermal Expansion," Journal of the European Ceramic Society, vol. 18, no. 14, pp. 2209-2215, 1998.
    [16] Z. Chen, R. Ran, W. Zhou, Z. Shao, and S. Liu, "Assessment of Ba 0.5 Sr 0.5 Co 1− y Fe y O 3− δ (y= 0.0–1.0) for prospective application as cathode for IT-SOFCs or oxygen permeating membrane," Electrochimica Acta, vol. 52, no. 25, pp. 7343-7351, 2007.
    [17] Q. Zhu, T. Jin, and Y. Wang, "Thermal expansion behavior and chemical compatibility of Ba x Sr 1− x Co 1− y Fe y O 3− δ with 8YSZ and 20GDC," Solid State Ionics, vol. 177, no. 13, pp. 1199-1204, 2006.
    [18] H. Hayashi, H. Inaba, M. Matsuyama, N. Lan, M. Dokiya, and H. Tagawa, "Structural consideration on the ionic conductivity of perovskite-type oxides," Solid State Ionics, vol. 122, no. 1, pp. 1-15, 1999.
    [19] M. Wilke, G. M. Partzsch, R. Bernhardt, and D. Lattard, "Determination of the iron oxidation state in basaltic glasses using XANES at the K-edge," Chemical Geology, vol. 220, no. 1, pp. 143-161, 2005.
    [20] A. S. Harvey, F. J. Litterst, Z. Yang, J. L. Rupp, A. Infortuna, and L. J. Gauckler, "Oxidation states of Co and Fe in Ba 1− x Sr x Co 1− y Fe y O 3− δ (x, y= 0.2–0.8) and oxygen desorption in the temperature range 300–1273 K," Physical Chemistry Chemical Physics, vol. 11, no. 17, pp. 3090-3098, 2009.
    [21] D. N. Mueller, R. A. De Souza, J. Brendt, D. Samuelis, and M. Martin, "Oxidation states of the transition metal cations in the highly nonstoichiometric perovskite-type oxide Ba 0.1 Sr 0.9 Co 0.8 Fe 0.2 O 3− δ," Journal of Materials Chemistry, vol. 19, no. 14, pp. 1960-1963, 2009.
    [22] E. Bucher, A. Egger, P. Ried, W. Sitte, and P. Holtappels, "Oxygen nonstoichiometry and exchange kinetics of Ba0.5Sr0.5Co0.8Fe0.2O3−δ," Solid State Ionics, vol. 179, no. 21-26, pp. 1032-1035, 2008.
    [23] E. Girdauskaite, H. Ullmann, M. Al Daroukh, V. Vashook, M. Bülow, and U. Guth, "Oxygen stoichiometry, unit cell volume, and thermodynamic quantities of perovskite-type oxides," Journal of Solid State Electrochemistry, vol. 11, no. 4, pp. 469-477, 2007.
    [24] H. Wang, Y. Cong, and W. Yang, "Oxygen permeation study in a tubular Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3-δ oxygen permeable membrane," Journal of Membrane Science, vol. 210, no. 2, pp. 259-271, 2002.
    [25] S. Svarcova, "Structural instability of cubic perovskite BaxSr1−xCo1−yFeyO3−δ," Solid State Ionics, vol. 178, no. 35-36, pp. 1787-1791, 2008.
    [26] S. Misture, "Large-volume atmosphere-controlled high-temperature x-ray diffraction furnace," Measurement Science and Technology, vol. 14, no. 7, p. 1091, 2003.
    [27] L. Ge et al., "Properties and performance of A-site deficient (Ba 0.5 Sr 0.5) 1− x Co 0.8 Fe 0.2 O 3− δ for oxygen permeating membrane," Journal of Membrane Science, vol. 306, no. 1, pp. 318-328, 2007.
    [28] Qingshanzhu, Tonganjin, and Yongwang, "Thermal expansion behavior and chemical compatibility of BaxSr1−xCo1−yFeyO3−δ with 8YSZ and 20GDC," Solid State Ionics, vol. 177, no. 13-14, pp. 1199-1204, 2006.
    [29] B. Wei et al., "Crystal structure, thermal expansion and electrical conductivity of perovskite oxides BaxSr1−xCo0.8Fe0.2O3−δ (0.3≤x≤0.7)," Journal of the European Ceramic Society, vol. 26, no. 13, pp. 2827-2832, 2006.
    [30] M. Al Daroukh, V. Vashook, H. Ullmann, F. Tietz, and I. A. Raj, "Oxides of the AMO 3 and A 2 MO 4-type: structural stability, electrical conductivity and thermal expansion," Solid State Ionics, vol. 158, no. 1, pp. 141-150, 2003.
    [31] C. Fisher, M. Yoshiya, Y. Iwamoto, J. Ishii, M. Asanuma, and K. Yabuta, "Oxide ion diffusion in perovskite-structured Ba 1− x Sr x Co 1− y Fe y O 2.5: A molecular dynamics study," Solid State Ionics, vol. 177, no. 39, pp. 3425-3431, 2007.
    [32] S. Lee, Y. Lim, E. A. Lee, H. J. Hwang, and J.-W. Moon, "Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3− δ (BSCF) and La 0.6 Ba 0.4 Co 0.2 Fe 0.8 O 3− δ (LBCF) cathodes prepared by combined citrate-EDTA method for IT-SOFCs," Journal of Power Sources, vol. 157, no. 2, pp. 848-854, 2006.
    [33] A. Mineshige, M. Inaba, T. Yao, Z. Ogumi, K. Kikuchi, and M. Kawase, "Crystal Structure and Metal–Insulator Transition of La1− xSrxCoO3," Journal of Solid State Chemistry, vol. 121, no. 2, pp. 423-429, 1996.
    [34] L.-W. Tai, M. Nasrallah, H. Anderson, D. Sparlin, and S. Sehlin, "Structure and electrical properties of La1− xSrxCo1− yFeyO3. Part 1. The system La0. 8Sr0. 2Co1− yFeyO3," Solid State Ionics, vol. 76, no. 3-4, pp. 259-271, 1995.
    [35] R. M. Thorogood, Srinivasan, R., Yee, T. F., & Drake, M. P., "Composite mixed conductor membranes for producing oxygen.," 1993.
    [36] H. Wang, W. S. Yang, Y. Cong, X. Zhu, and Y. Lin, "Structure and oxygen permeability of a dual-phase membrane," Journal of membrane science, vol. 224, no. 1, pp. 107-115, 2003.
    [37] L. Tan, X. Gu, L. Yang, L. Zhang, C. Wang, and N. Xu, "Influence of sintering condition on crystal structure, microstructure, and oxygen permeability of perovskite-related type Ba 0.8 Sr 0.2 Co 0.8 Fe 0.2 O 3− δ membranes," Separation and purification technology, vol. 32, no. 1, pp. 307-312, 2003.
    [38] L. Tan, X. Gu, L. Yang, W. Jin, L. Zhang, and N. Xu, "Influence of powder synthesis methods on microstructure and oxygen permeation performance of Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3− δ perovskite-type membranes," Journal of Membrane Science, vol. 212, no. 1, pp. 157-165, 2003.
    [39] J.-I. Jung and D. D. Edwards, "X-ray photoelectron study on Ba0.5Sr0.5Co x Fe1−x O3−δ (BSCF: x = 0.2 and 0.8) ceramics annealed at different temperature and pO2," Journal of Materials Science, vol. 46, no. 23, pp. 7415-7422, 2011.
    [40] J. Ovenstone, J. S. White, and S. T. Misture, "Phase transitions and phase decomposition of La 1− x Sr x CoO 3− δ in low oxygen partial pressures," Journal of Power Sources, vol. 181, no. 1, pp. 56-61, 2008.
    [41] S. Švarcová, K. Wiik, J. Tolchard, H. J. Bouwmeester, and T. Grande, "Structural instability of cubic perovskite Ba x Sr 1− x Co 1− y Fe y O 3− δ," Solid State Ionics, vol. 178, no. 35, pp. 1787-1791, 2008.
    [42] J.-I. Jung, S. T. Misture, and D. D. Edwards, "Oxygen stoichiometry, electrical conductivity, and thermopower measurements of BSCF (Ba0.5Sr0.5CoxFe1−xO3−δ, 0≤x≤0.8) in air," Solid State Ionics, vol. 181, no. 27-28, pp. 1287-1293, 2010.
    [43] L. Rørmark, A. B. Mørch, K. Wiik, S. Stølen, and T. Grande, "Enthalpies of Oxidation of CaMnO3-δ, Ca2MnO4-δ and SrMnO3-δ Deduced Redox Properties," Chemistry of materials, vol. 13, no. 11, pp. 4005-4013, 2001.
    [44] H. Zhao, W. Shen, Z. Zhu, X. Li, and Z. Wang, "Preparation and properties of BaxSr1−xCoyFe1−yO3−δ cathode material for intermediate temperature solid oxide fuel cells," Journal of Power Sources, vol. 182, no. 2, pp. 503-509, 2008.
    [45] Z. Shao, G. Xiong, H. Dong, W. Yang, and L. Lin, "Synthesis, oxygen permeation study and membrane performance of a Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3− δ oxygen-permeable dense ceramic reactor for partial oxidation of methane to syngas," Separation and Purification Technology, vol. 25, no. 1, pp. 97-116, 2001.
    [46] S. Baumann, J. M. Serra, M. P. Lobera, S. Escolástico, F. Schulze-Küppers, and W. A. Meulenberg, "Ultrahigh oxygen permeation flux through supported Ba0.5Sr0.5Co0.8Fe0.2O3−δ membranes," Journal of Membrane Science, vol. 377, no. 1-2, pp. 198-205, 2011.
    [47] A. Kovalevsky et al., "Oxygen exchange-limited transport and surface activation of Ba0.5Sr0.5Co0.8Fe0.2O3−δ capillary membranes," Journal of Membrane Science, vol. 368, no. 1, pp. 223-232, 2011/02/15/ 2011.
    [48] D. Han, X. Tan, Z. Yan, Q. Li, and S. Liu, "New morphological Ba0.5Sr0.5Co0.8Fe0.2O3−α hollow fibre membranes with high oxygen permeation fluxes," Ceramics International, vol. 39, no. 1, pp. 431-437, 2013/01/01/ 2013.
    [49] J. A. Kilner, R. A. De Souza, and I. C. Fullarton, "Surface exchange of oxygen in mixed conducting perovskite oxides," Solid State Ionics, vol. 86, pp. 703-709, 1996/07/01/ 1996.
    [50] Y. Wang, J. Cheng, M. Huang, M. Liu, M. Li, and C. Xu, "Effects of surface modification with Co 3 O 4 nanoparticles on the oxygen permeability of Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3-δ membranes," Applied Surface Science, vol. 416, pp. 574-580, 2017.

    無法下載圖示 校內:2023-01-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE