| 研究生: |
陳譽友 Chen, Yu-Yo |
|---|---|
| 論文名稱: |
侷限噴流衝擊共軛熱傳之數值研究 Numerical Study of Conjugate Heat Transfer for Confined Jet Impingement |
| 指導教授: |
楊玉姿
Yang, Yue-Tzu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 數值計算 、侷限噴流 、共軛熱傳 |
| 外文關鍵詞: | Numerical calculation, Confined impingement, Conjugate heat transfer |
| 相關次數: | 點閱:74 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要針對侷限衝擊噴流之共軛熱傳做數值模擬,並採用Li及Garimella (2001) 實驗數據來分析穩態二維、紊流流場與熱傳的數值模擬以驗證理論模式之可行性。本文紊流統御方程式乃是以控制體積法為基礎,配合有限差分法及冪次法則來離散成差分方程式。對於紊流的結構則是以 紊流模式配合牆函數來描述。並以SIMPLE運算法則求解壓力-速度結合的問題。
本文的參數包含噴口口徑 (d=3~6mm),紊流雷諾數 (Re=4000~23000),噴口至加熱片的距離 (H/d=2~4),工作介質為水。本文中氣-液自由表面的幾何形狀是由疊代的方式來決定。本文以速度向量圖與紊流層次來表示在侷限流場之迴流現象,噴嘴出口噴流的發展,以及沿著衝擊表面流體的發展。結果顯示,除了雷諾數Re,噴口至加熱表面的間距(H/d)對於溫度分佈及紐賽數均有顯著的影響。 之預測方面,再加熱片段的表面上熱傳係數低估超過100﹪,此低估預測相信是由於在此區域紊流動能的低估所致。
This study presents the numerical simulation of conjugate heat transfer of confined impinging jet, based on the experiment results of Chin-Yuan Li and Suresh V. Garimella (2000). The numerical simulation of steady, two dimensional, turbulent flow and heat transfer is adopted to test the accuracy of the theoretical model. The turbulent-governing equation are resolved by Control-Volume based finite-different method with power-low scheme, and the well-known turbulence model and its associate wall function to describe the turbulent structure. The SIMPLE algorithm is adopted to solve the pressure-velocity coupling.
The parameters studied include orifice diameter d=3~6mm, turbulent flow Reynolds number Re=4000~23000, and orifice to heat-source spacing H/d=2~4, and the working medium is water. The geometry of the free surface was determined iteratively. Velocity vector contour and turbulence levels are presented to describe the flow field in the recirculation pattern in the confined outflow, the development of the jet after exiting the nozzle and the development of the flow along the impingement surface. It is found that in addition to jet Reynolds number (Re), and orifice to heated surface spacing (H/d) have significant influence on temperature distribution and Nusselt number (Nu).Quantitatively, predictions underestimate the surface heat transfer above the heated surface by more than 100﹪. This underprediction is believed to be due to the underprediction of turbulent kinetic energy in that region.
Agarwal, P. K. and Bower, W. W., “Navier-Stokes Computations of Turbulent Compressible Two-Dimensional Impinging Jet Flowfields”, AIAA Journal, Vol.20, No. 5, pp. 577-584, 1982.
Al-Sanea, S., “A numerical study of the flow and heat-transfer characteristics of an impinging laminar slot-jet including crossflow effects”, Int. J. Heat Mass Trans. 35 (10), pp. 2501-2513, 1992.
Bower, W. W., Kotansky, D. R. and Hoffman, G. H., “Computations and Measurements of Two-Dimensional Turbulent Jet Impingement Flowfields”, Proc. Symp. on Turbulent Shear Flows, No. 3.1-3.8, Pem. State University, 1977.
Chung Y.M., Luo K.H., Sandham N.D., “Numerical study of momentum and heat transfer in unsteady impinging jets”, Int. J. Heat Mass Flow. 23,pp. 592-600, 2002.
Elison, B., and Webb, B. W., “Local Heat Transfer to Impinging Liquid Jets in the Initially Laminar, Transitional, and Turbulent Regimes”, International Journal of Heat and Mass Transfer, Vol. 37, No. 8, pp. 1207-1216, 1994.
Gardon, R., Akfirat, J.C., “Heat transfer characteristics of impinging two-dimensional air jets”, ASME J. Heat Trans. 88, pp. 101-108, 1966.
Glauert, M. B., “The Wall Jet”, Journal of Fluid Mechanics, Vol. 1. No.6, pp. 625-643, 1956.
Goldstein, R. J. and Timmers, J. F., “Visualization of Heat Transfer from Arrays of Impinging Jets”, Int. J. Heat and Mass Transfer, Vol.25, No.12, pp. 1857-1868, 1982.
Goldstein, R. J., Sobolik, K. A., and Sool, W. S., “Effect of Entrainment on the Heat Transfer to a Heated Circular Air Jet Impinging on a Flat surface”, Transactions of the ASME, Vol. 112, pp. 608-611, 1990.
Jili, L. M. and Dagan, Z., “Experimental Investigation of Single Phase Multi-Jet Impingement Cooling of An Array of Microelectronic Heat Source”, Proceedings of the International Symposium on Cooling Technolyogy for Electronic Equipment, pp. 265-283, 1987.
Kercher, D. M. and Tabakoff, W., “Heat Transfer by a Square Array of Round Air Jets Impinging Perpendicular to a Flat Surface Including the Effect of Spent Air”, J. Engrg. Power, Vol. 92, pp. 73-82, 1970.
Liu, X., Lienhard, J. H., and Lombara, J. S., “Convective Heat Transfer by Impingement of Circular Liquid Jets”, Journal of Heat Transfer, Vol.113, No3, pp. 571-582, 1991.
Ma, C. F., Zhuang, Y., Lee, S. C., and Gomi, T., “Impingement Heat Transfer and Recovery Effect with Submerged Jets of Large Prandtl Number Liquid-II. Initially Laminar Confined Slot Jets”, International Journal of Heat and Mass Transfer, Vol. 40, No. 6, pp. 1491-1500, 1997.
Metzger, D. E., Cummings, K. N., and Ruby, W. A., “Effects of Prandtl Number on Heat Transfer Characteristics of Impinging Liquid Jets”, Heat Transfer, 1974: Proceedings of the 5th International Heat Transfer Conference, Vol. 2, Hemisphere, Washington, DC, pp. 20-24, 1974.
Sherif, S. A. and Pletcher, R. H., “Measurements of the Thermal Characteristics of Heated Turbulent Jets in Crossflow”, J. Heat Transfer, Vol. 111, pp. 897-903, 1989.
Wang, X. S., Dagan, Z., and Jiji, L. M., “Heat Transfer Between a Circular Free Impinging Jet and a Solid Surface with Non-Uniform Wall Temperature or Wall Heat Flux-1. Solution for the Stagnation Region”, International Journal of Heat and Mass Transfer, Vol. 32, No. 7, pp. 1351-1360, 1989.
Wang, X. S., Dagan, Z., and Jiji, L. M., “Heat Transfer Between a Circular Free Impinging Jet and a Solid Surface with Non-Uniform Wall Temperature or Wall Heat Flux-2. Solution for the Stagnation Region”, International Journal of Heat and Mass Transfer, Vol. 32, No. 7, pp. 1361-1371, 1989.
Wolfshtein, M., “Some Solutions of the Plane Turbulent Impinging Jet”, ASME Journal of Basic Engineering, pp. 915-922, 1970.
Womac, D. J., Ramadhyani, S., Incropera F. P., “Correlating Equation for Impingement Cooling of Small Heat Source With Single Circular Liquid Jets”, Transactions of the ASME, Vol. 115, pp.106-115, 1993.