簡易檢索 / 詳目顯示

研究生: 陳乃奇
Chen, Nai-Chi
論文名稱: 尋找並分析參與大腸桿菌運動性的蛋白酵素Prc受質
Identification and characterization of novel Prc protease substrates that are involved in the defective motility of the Escherichia coli prc mutant
指導教授: 鄧景浩
Teng, Ching-Hao
學位類別: 碩士
Master
系所名稱: 醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 74
中文關鍵詞: Prc蛋白酶移動能力受質YceG
外文關鍵詞: Prc protease, motility, substrates, YceG
相關次數: 點閱:52下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 致病性大腸桿菌引起許多傳染病,如新生兒腦膜炎,尿路感染和腸胃炎。然而,抗藥性菌株的快速出現,增加了治療此類細菌感染的難度。因此,發展新型的抗菌策略已成為最迫切的事情。幫助致病菌感染的毒力因子將是開發新型抗菌策略的潛在目標。大腸桿菌週質蛋白酶Prc的缺失會降低細菌的移動能力,而細菌的移動能力被認為是一種毒力因子,所以了解Prc蛋白酶影響細菌移動能力的機制可能有助於發展新穎的抗菌策略。因為Prc是一種蛋白酶,所以prc基因缺失菌株的移動能力下降可能是Prc受質的狀態改變造成的。根據先前的研究與我們實驗室的發現,有115個大腸桿菌蛋白有潛力可與Prc直接作用,表示它們有可能是Prc蛋白酶的受質。為了找出參與在prc基因缺失菌株移動能力的Prc受質,我們利用移動性測定法來進行篩選其中83個蛋白。在這些蛋白中,我們發現可能的Prc受質蛋白YceG和Pal,他們在細胞中的堆積降低了大腸桿菌的移動能力。然而,更進一步的實驗顯示YceG會被Prc蛋白酶降解而Pal並不會,表示只有YceG是Prc的受質。如同預期,prc基因缺失菌株中YceG的堆積是降低鞭毛蛋白FliC表現量的原因之一。這些結果表示,Prc受質YceG在prc基因缺失菌株中的堆積使FliC表現量下降,進而抑制大腸桿菌的移動能力。本研究增加對Prc蛋白酶參與在細菌移動能力機制的了解。

    Pathogenic Escherichia coli cause many infectious diseases, such as neonatal meningitis, urinary tract infections and gastroenteritis. However, the rapid emerging antibiotic resistant strains have become a significant burden to treat such bacterial infections. Therefore, it is urgently needed to develop new antibiotic agents. The virulence factors of pathogenic bacteria are potential targets for developing novel antimicrobial strategies. The deficiency of the E. coli periplasmic protease Prc significantly decreases the bacterial motility. Given that bacterial motility contributes to the bacterial virulence, understanding the mechanism by which the protease affects the motility may facilitate the development of novel antimicrobial strategies. Because Prc is a protease, the decreased motility of the prc mutant is likely due to the alter fates of the Prc substrates in the mutant. Based on others and our previous studies, 115 E. coli proteins are shown to be possiblely to be able to interact with Prc directly, suggesting that they are potentail Prc substrates. We utilized motility assay to screen 83 of these proteins for Prc substrate that was responsible for the decreased motility of the prc mutant. Among these proteins, we found that the intracellular accumulation of the potential Prc substrate proteinsYceG and Pal decreased the bacterial motility. However, in the further investigation, we found that Prc protease degraded YceG but not Pal, suggesting that only YceG is a substrate of Prc. As expected, the accumulation of YceG in the prc mutant decreased the level of the flagellin FliC. Taken together, these results demonstrated that the accumulation of the Prc substrate YceG in the prc mutant decreases the expression of FliC, and thus to suppress the bacterial motility. This study facilitates our understanding how the Prc protease is involved in bacterial motiltity.

    中文摘要 I Extended Abstract II 誌謝 V 目錄 VI List of Tables IX List of Figures X 一、 緒論 1 1. 大腸桿菌 1 2. E. coli的治療與發展 1 3. 細菌的鞭毛 2 3.1. 鞭毛的組成與合成 2 4. Prc蛋白酶 3 4.1. Prc的功能 3 4.2.目前已知的Prc受質 3 4.3. prc基因缺失所造成的細菌表現型 4 5. YceG 5 6. Pal 5 二、 實驗目的 7 三、 材料與方法 8 1. 菌株培養條件及保存方法 8 2. 基因重組菌株的建構 8 2.1. 建構帶有yceG-HA tag或pal-his tag的菌株 8 2.2. 建構prc yceG基因缺失菌株 9 2.3. 建構yceG (E218Q)-HA基因重組菌株 9 3. 重組質體的建構 10 3.1. 建構pBAD-YceG (E218Q)-HA plasmid 10 4. 移動性測定 (Motility assay) 10 5. P1噬菌體的製備與轉導 10 5.1. P1噬菌體 (P1 phage)的製備 10 5.2. P1噬菌體之轉導 (Transduction) 11 6. 電穿孔勝任細胞的製備與形質轉換 (Transformation) 11 7. 蛋白質純化 12 8. 西方墨點法 12 9. 細胞外降解測定 (In vitro degradation assay) 13 10. 細胞內降解測定 (In vivo degradation assay) 13 11. 細胞外下拉測定 (In vitro pull-down assay) 13 12. 即時聚合酶鏈鎖反應 14 12.1. RNA isolation 14 12.2. RNA反轉錄成互補DNA 15 12.3. Real-time PCR (qPCR) 15 四、 結果 16 1. Prc protease參與在E. coli MG1655的移動能力 16 2. 藉由Motility assay篩選出可能的Prc受質 16 3. 可能的Prc Type I substrates YceG或Pal的堆積會造成E. coli MG1655移動能力的缺陷 18 4. YceG會被Prc降解但Pal不會 18 5. YceG的堆積會造成FliC的表現量下降 20 6. YceG的功能參與在Δprc-MG1655的移動能力缺失 21 五、 討論 22 六、 Tables 26 七、 Figures 54 八、 附錄 68 九、 參考文獻 69

    1. Croxen, M.A., et al., Recent advances in understanding enteric pathogenic Escherichia coli. Clin Microbiol Rev, 2013. 26(4): p. 822-80.
    2. Croxen, M.A. and B.B. Finlay, Molecular mechanisms of Escherichia coli pathogenicity. Nat Rev Microbiol, 2010. 8(1): p. 26-38.
    3. Bentley, R. and R. Meganathan, Biosynthesis of vitamin K (menaquinone) in bacteria. Microbiol Rev, 1982. 46(3): p. 241-80.
    4. Hudault, S., J. Guignot, and A.L. Servin, Escherichia coli strains colonising the gastrointestinal tract protect germfree mice against Salmonella typhimurium infection. Gut, 2001. 49(1): p. 47-55.
    5. Kuhnert, P., J. Nicolet, and J. Frey, Rapid and accurate identification of Escherichia coli K-12 strains. Appl Environ Microbiol, 1995. 61(11): p. 4135-9.
    6. Vasoo, S., J.N. Barreto, and P.K. Tosh, Emerging issues in gram-negative bacterial resistance: an update for the practicing clinician. Mayo Clin Proc, 2015. 90(3): p. 395-403.
    7. Johnson, J.R., et al., Virulence characteristics and phylogenetic background of multidrug-resistant and antimicrobial-susceptible clinical isolates of Escherichia coli from across the United States, 2000-2001. J Infect Dis, 2004. 190(10): p. 1739-44.
    8. Ottemann, K.M. and J.F. Miller, Roles for motility in bacterial-host interactions. Mol Microbiol, 1997. 24(6): p. 1109-17.
    9. Ramos, H.C., M. Rumbo, and J.C. Sirard, Bacterial flagellins: mediators of pathogenicity and host immune responses in mucosa. Trends Microbiol, 2004. 12(11): p. 509-17.
    10. Duan, Q., et al., Flagella and bacterial pathogenicity. J Basic Microbiol, 2013. 53(1): p. 1-8.
    11. Lane, M.C., et al., Role of motility in the colonization of uropathogenic Escherichia coli in the urinary tract. Infect Immun, 2005. 73(11): p. 7644-56.
    12. Pichon, C., et al., Uropathogenic Escherichia coli AL511 requires flagellum to enter renal collecting duct cells. Cell Microbiol, 2009. 11(4): p. 616-28.
    13. Parthasarathy, G., Y. Yao, and K.S. Kim, Flagella promote Escherichia coli K1 association with and invasion of human brain microvascular endothelial cells. Infect Immun, 2007. 75(6): p. 2937-45.
    14. Terashima, H., S. Kojima, and M. Homma, Flagellar motility in bacteria structure and function of flagellar motor. Int Rev Cell Mol Biol, 2008. 270: p. 39-85.
    15. Brown, J., et al., The coordination of flagellar gene expression and the flagellar assembly pathway. Pili and ffagella: current research and future trends. Caister Academic Press, Norfolk, United Kingdom, 2009: p. 99-120.
    16. Komeda, Y., Transcriptional control of flagellar genes in Escherichia coli K-12. J Bacteriol, 1986. 168(3): p. 1315-8.
    17. Liu, X. and P. Matsumura, The FlhD/FlhC complex, a transcriptional activator of the Escherichia coli flagellar class II operons. J Bacteriol, 1994. 176(23): p. 7345-51.
    18. Ohnishi, K., et al., Gene fliA encodes an alternative sigma factor specific for flagellar operons in Salmonella typhimurium. Mol Gen Genet, 1990. 221(2): p. 139-47.
    19. Hara, H., et al., Cloning, mapping, and characterization of the Escherichia coli prc gene, which is involved in C-terminal processing of penicillin-binding protein 3. J Bacteriol, 1991. 173(15): p. 4799-813.
    20. Singh, S.K., et al., Regulated proteolysis of a cross-link-specific peptidoglycan hydrolase contributes to bacterial morphogenesis. Proc Natl Acad Sci U S A, 2015. 112(35): p. 10956-61.
    21. Silber, K.R., K.C. Keiler, and R.T. Sauer, Tsp: a tail-specific protease that selectively degrades proteins with nonpolar C termini. Proc Natl Acad Sci U S A, 1992. 89(1): p. 295-9.
    22. Keiler, K.C., et al., C-terminal specific protein degradation: activity and substrate specificity of the Tsp protease. Protein Sci, 1995. 4(8): p. 1507-15.
    23. Beebe, K.D., et al., Substrate recognition through a PDZ domain in tail-specific protease. Biochemistry, 2000. 39(11): p. 3149-55.
    24. Keiler, K.C. and R.T. Sauer, Identification of active site residues of the Tsp protease. J Biol Chem, 1995. 270(48): p. 28864-8.
    25. Nagasawa, H., et al., Determination of the cleavage site involved in C-terminal processing of penicillin-binding protein 3 of Escherichia coli. J Bacteriol, 1989. 171(11): p. 5890-3.
    26. Hara, H., et al., Genetic analyses of processing involving C-terminal cleavage in penicillin-binding protein 3 of Escherichia coli. J Bacteriol, 1989. 171(11): p. 5882-9.
    27. Tadokoro, A., et al., Interaction of the Escherichia coli lipoprotein NlpI with periplasmic Prc (Tsp) protease. J Biochem, 2004. 135(2): p. 185-91.
    28. Weski, J., et al., Chemical biology approaches reveal conserved features of a C-terminal processing PDZ protease. Chembiochem, 2012. 13(3): p. 402-8.
    29. 許博淳, 分析一個大腸桿菌蛋白酵素之功能, in 分子醫學研究所. 2016, 國立成功大學: 台南市. p. 59.
    30. Wang, C.Y., et al., Prc contributes to Escherichia coli evasion of classical complement-mediated serum killing. Infect Immun, 2012. 80(10): p. 3399-409.
    31. Seoane, A., et al., Multiple antibiotic susceptibility associated with inactivation of the prc gene. J Bacteriol, 1992. 174(23): p. 7844-7.
    32. 黃文俊, 蛋白酶Prc在腸道外致病性大腸桿菌致病機轉的角色, in 基礎醫學研究所. 2016, 國立成功大學: 台南市. p. 104.
    33. Baumler, A.J., et al., Salmonella typhimurium loci involved in survival within macrophages. Infect Immun, 1994. 62(5): p. 1623-30.
    34. Reiling, S.A., et al., Prc protease promotes mucoidy in mucA mutants of Pseudomonas aeruginosa. Microbiology, 2005. 151(Pt 7): p. 2251-61.
    35. Liao, C.T., et al., Functional characterization and transcriptome analysis reveal multiple roles for prc in the pathogenicity of the black rot pathogen Xanthomonas campestris pv. campestris. Res Microbiol, 2016. 167(4): p. 299-312.
    36. Yunck, R., H. Cho, and T.G. Bernhardt, Identification of MltG as a potential terminase for peptidoglycan polymerization in bacteria. Mol Microbiol, 2016. 99(4): p. 700-18.
    37. Babu, M., et al., Genetic interaction maps in Escherichia coli reveal functional crosstalk among cell envelope biogenesis pathways. PLoS Genet, 2011. 7(11): p. e1002377.
    38. Godlewska, R., et al., Peptidoglycan-associated lipoprotein (Pal) of Gram-negative bacteria: function, structure, role in pathogenesis and potential application in immunoprophylaxis. FEMS Microbiol Lett, 2009. 298(1): p. 1-11.
    39. Sturgis, J.N., Organisation and evolution of the tol-pal gene cluster. Journal of molecular microbiology and biotechnology, 2001. 3(1): p. 113-122.
    40. Lazzaroni, J.C. and R. Portalier, The excC gene of Escherichia coli K-12 required for cell envelope integrity encodes the peptidoglycan-associated lipoprotein (PAL). Mol Microbiol, 1992. 6(6): p. 735-42.
    41. Kowata, H., et al., Quantitative measurement of the outer membrane permeability in Escherichia coli lpp and tol-pal mutants defines the significance of Tol-Pal function for maintaining drug resistance. J Antibiot (Tokyo), 2016. 69(12): p. 863-870.
    42. Bernadac, A., et al., Escherichia coli tol-pal mutants form outer membrane vesicles. J Bacteriol, 1998. 180(18): p. 4872-8.
    43. Cascales, E., et al., Pal lipoprotein of Escherichia coli plays a major role in outer membrane integrity. J Bacteriol, 2002. 184(3): p. 754-9.
    44. Datsenko, K.A. and B.L. Wanner, One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A, 2000. 97(12): p. 6640-5.
    45. Baba, T., et al., Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol, 2006. 2: p. 2006 0008.
    46. Thomason, L.C., N. Costantino, and D.L. Court, E. coli genome manipulation by P1 transduction. Curr Protoc Mol Biol, 2007. Chapter 1: p. Unit 1 17.
    47. Kneidinger, B., et al., Biosynthesis pathway of ADP-L-glycero-beta-D-manno-heptose in Escherichia coli. J Bacteriol, 2002. 184(2): p. 363-9.
    48. Macritchie, D.M. and T.L. Raivio, Envelope Stress Responses. EcoSal Plus, 2009. 3(2).
    49. Shin, S. and C. Park, Modulation of flagellar expression in Escherichia coli by acetyl phosphate and the osmoregulator OmpR. J Bacteriol, 1995. 177(16): p. 4696-702.
    50. Francez-Charlot, A., et al., RcsCDB His-Asp phosphorelay system negatively regulates the flhDC operon in Escherichia coli. Mol Microbiol, 2003. 49(3): p. 823-32.
    51. De Wulf, P., O. Kwon, and E.C. Lin, The CpxRA signal transduction system of Escherichia coli: growth-related autoactivation and control of unanticipated target operons. J Bacteriol, 1999. 181(21): p. 6772-8.
    52. Wijetunge, D.S., et al., Complete Genome Sequence of Escherichia coli Strain RS218 (O18:H7:K1), Associated with Neonatal Meningitis. Genome Announc, 2015. 3(4).
    53. Wijetunge, D.S., et al., Complete nucleotide sequence of pRS218, a large virulence plasmid, that augments pathogenic potential of meningitis-associated Escherichia coli strain RS218. BMC Microbiol, 2014. 14: p. 203.

    下載圖示 校內:2022-12-31公開
    校外:2022-12-31公開
    QR CODE