簡易檢索 / 詳目顯示

研究生: 楊朝銓
Yang, Chao-Chuan
論文名稱: 磷硫四芽配位基之鐵二價及銅一價金屬錯合物的合成與鑑定;單鐵氫化酵素的仿生錯合物
Syntheses and Characterization of Fe(II) and Cu(I) Complexes Supported by a P2S2 Tetradentate ligand; Biomimetic Complex of Fe-only Hydrogenase
指導教授: 許鏵芬
Hsu, Hua-Fen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 94
中文關鍵詞: 磷硫配位基鐵硫錯合物銅硫錯合物
外文關鍵詞: thiolatophosphine ligands, iron thiolate complexes, copper thiolate complexes
相關次數: 點閱:173下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們實驗室對在金屬蛋白質裡金屬所扮演的角色有極大的興趣,多硫配位環境存在許多金屬蛋白質裡的金屬中心,例如氫化酵素,CO 脫氫酵素以及金屬硫蛋中皆扮演著關鍵的角色。因此,為了瞭解在自然界生物系統裡金屬位置的功用,我們專注於在金屬錯合物裡多硫配位環境的化學研究,在此研究,一個新型的四芽二磷二硫配位基已經成功被開發,也對該配位基的幾種金屬錯合物做了鑑定。
    在這篇論文,我們成功合成了四芽的二磷二硫配位基H2[P2S2*],並且透過幾種物理方法對此配位基做鑑定。我們也合成了兩種以P2S2*為配位基的金屬錯合物,[Fe(P2S2*)(CO)2] 和 [Cu2(P2S2*)(PPh3)4]•4CH3OH•H2O,並且透過X光單晶繞射儀及光譜分析對其鑑定。[Fe(P2S2*)(CO)2] 是一個單鐵(二價)錯化合物,金屬中心藉由一個P2S2*和兩個CO配位基形成一個八面體的幾何結構。[Cu2(P2S2*)(PPh3)4]•4CH3OH•H2O為一個二聚體單元並有個i對稱中心。銅一價金屬中心從P2S2*中鍵結其中一個磷及一個硫和兩個PPh3配位基形成一個四面體的幾何結構。

    Our research team has been interested in studying the roles of metal sites in metalloproteins. Metal centers with sulfur-rich coordination sphere are present in many metalloproteins, such as hydrogenase, CO dehydrogenase and Metallothioneins. Therefore, we have focused on studying chemistry of metal complexes with sulfur ligation environment to provide the fundamental understanding for the nature of metal sites in biological systems. In this research, a new type of thiolate ligand, tetradentate diphosphine-dithiolate, has been developed. Several metal complexes of this ligand have also been studied.
    In this thesis, the syntheses of the diphosphine-dithiolate ligand, H2[P2S2*], are described. Several physical methods have been applied to characterize the obtained ligand. Two metal complexes of P2S2* derivatives [Fe(P2S2*)(CO)2] and [Cu2(P2S2*)(PPh3)4]•4CH3OH•H2O are also synthesized and characterized by X-ray crystallography and spectroscopies. [Fe(P2S2*)(CO)2] is a monoiron(II) species. The metal center adopts an octahedral geometry by binding to a P2S2* ligand and two carbonyl ligands. [Cu2(P2S2*)(PPh3)4]•4CH3OH•H2O consists of a dimeric unit and embraces a crystallographic inversion center. Each Cu(I) has a tetrahedral geometry and the coordination sphere is completed by one thiolato group and one phosphine atom of P2S2* ligand, as well as two phosphine atoms from two PPh3 ligands.

    Abstract I 中文摘要 II 誌謝 III List of Contents IV List of Schemes VI List of Tables VII List of Figures VIII Abbreviations XI Chapter 1. Introduction 1 1-1. Metalloproteins containing sulfur-rich coordination sphere 1 1-2. Example of hybrid P/S ligand system and related metal complexes 3 1-3. Hydrogenase 6 1-4. Biomimetic complexes for Fe-only hydrogenase 8 1-5. Example of copper thiolatophosphine complexes 12 1-6. Motivation of this work 15 Chapter 2. Results and discussion 16 2-1. The overall description for synthesis of H2[P2S2*] ligand 16 2-1-1. Synthesis of O-2(biphenyl)-N,N-dimethylthiocarbamate 17 2-1-2. Synthesis of 2-mercaptobiphenyl 17 2-1-3. Synthesis of Li2[PhPCH2CH2PPh]•(THF)4 18 2-1-4. Synthesis of ClPhPCH2CH2PPhCl 18 2-1-5. Synthesis and characterization of H2[P2S2*] 19 NMR spectrum of H2[P2S2*] ligand 20 Electrospray Ionization Mass analysis of H2[P2S2*] ligand 23 IR spectrum of H2[P2S2*] ligand 25 2-2. Synthesis and characterization of [Fe(P2S2*)(CO)2] 26 X-ray structural determination of [Fe(P2S2*)(CO)2] 27 IR spectrum of [Fe(P2S2*)(CO)2] 33 UV-Vis spectrum of [Fe(P2S2*)(CO)2] 35 NMR spectrum of [Fe(P2S2*)(CO)2] 36 The electrochemical study of [Fe(P2S2*)(CO)2] 38 Electrospray Ionization Mass analysis of [Fe(P2S2*)(CO)2] 41 The chemistry of the synthesis of [Fe(P2S2*)(CO)2] 42 2-3. Synthesis and characterization of [Cu2(P2S2*)(PPh3)4] 43 X-ray structural determination of [Cu2(P2S2*)(PPh3)4]•4CH3OH•H2O 44 UV-Vis spectrum of [Cu2(P2S2*)(PPh3)4]•4CH3OH•H2O 49 The electrochemical study of [Cu2(P2S2*)(PPh3)4]•4CH3OH•H2O 50 NMR Spectrum of [Cu2(P2S2*)(PPh3)4]•4CH3OH•H2O 51 Chapter 3. Conclusions 55 Chapter 4. Experiments and Instruments 56 4-1. General Procedures and Materials 56 4-2. Instruments 59 X-ray crystallographic data collection of the structures 59 Ultraviolet-Visible-Near Infrared Spectroscopy 59 Elemental Analysis 59 Electrospray Ionization Mass Spectrometry 59 Infrared Spectroscopy 60 Cyclic Voltammetry 60 Nucleic Magnetic Resonance Spectroscopy 60 4-3. Synthesis 61 Li2[PhPCH2CH2PPh]•(THF)4 61 ClPhPCH2CH2PPhCl 61 O-2(biphenyl)-N,N-dimethylthiocarbamate 61 2-mercaptobiphenyl 62 H2[P2S2*] ligand 62 Cu(CH3CN)4BF4 63 [Fe(P2S2*)(CO)2] 63 [Cu2(P2S2*)(PPh3)4]•4CH3OH•H2O 63 Reference 64 Appendix A 68 Appendix B 71 Appendix C 75 Crystal of [Fe(P2S2*)(CO)2] 75 Crystal of [Cu2(P2S2*)(PPh3)4] 79

    Solomon, E. I.; Gorelsky, S. I.; Dey, A., Metal–thiolate bonds in bioinorganic chemistry. J. Comput. Chem. 2006, 27 (12), 1415-1428.
    2. Krebs, B.; Henkel, G., Transition-Metal Thiolates: From Molecular Fragments of Sulfidic Solids to Models for Active Centers in Biomolecules. Angew. Chem., Int. Ed. Engl. 1991, 30 (7), 769-788.
    3. Rittle, J.; Peters, J. C., Fe–N2/CO complexes that model a possible role for the interstitial C atom of FeMo-cofactor (FeMoco). Proc. Natl. Acad. Sci. 2013, 110 (40), 15898-15903.
    4. Rubino, J. T.; Franz, K. J., Coordination chemistry of copper proteins: How nature handles a toxic cargo for essential function. J. Inorg. Biochem. 2012, 107 (1), 129-143.
    5. Takaoka, A.; Mankad, N. P.; Peters, J. C., Dinitrogen complexes of sulfur-ligated iron. J. Am. Chem. Soc. 2011, 133 (22), 8440-3.
    6. Chu, W.-C.; Wu, C.-C.; Hsu, H.-F., Catalytic Reduction of Hydrazine to Ammonia by a Vanadium Thiolate Complex. Inorg. Chem. 2006, 45 (8), 3164-3166.
    7. Issleib, K.; Gans, W., Cobalt-sowie Rhodiumkpmplexe primarer Mercaptoalkyl-phosphine und Bemerkungen zur Komplexbildung quadridentater P,P,S,S-liganden. Z. Anorg. Allg. Chem. 1982, 491 (1), 163-174.
    8. Schmelzer, R.; Schwarzenbach, D., Meso and Racemic diastereoisomers of 1,3-bis(2-mercaptoethyl-phenyl-phosphino)-propane nickel (II). Cryst. Struct. Commun. 1981, 10, 1317-1321.
    9. Kitagawa, T.; Kita, M.; Kashiwabara, K.; Fujita, J., Preparation and characterization of Cobalt(III), Nickel(II), and Coper(I) Complexes containing 5,8-diphenyl-5,8-diphospha-2,11-dithiadodecane (L), CH3SCH2CH2P(C6H5)CH2CH2P(C6H5)CH2CH2SCH3, and molecular-structure of Ni(rac(P)-L)2 (BF4)2. Bull. Chem. Soc. Jpn. 1991, 64 (10), 2942-2947.
    10. Vignais, P. M.; Billoud, B.; Meyer, J., Classification and phylogeny of hydrogenases1. FEMS Microbiol. Rev. 2001, 25 (4), 455-501.
    11. Vignais, P. M.; Billoud, B., Occurrence, Classification, and Biological Function of Hydrogenases:  An Overview. Chem. Rev. 2007, 107 (10), 4206-4272.
    12. Lubitz, W.; Ogata, H.; Rüdiger, O.; Reijerse, E., Hydrogenases. Chem. Rev. 2014, 114 (8), 4081-4148.
    13. Thauer, R. K.; Kaster, A.-K.; Goenrich, M.; Schick, M.; Hiromoto, T.; Shima, S., Hydrogenases from Methanogenic Archaea, Nickel, a Novel Cofactor, and H2 Storage. Annu. Rev. Biochem. 2010, 79 (1), 507-536.
    14. Vogt, S.; Lyon, E.; Shima, S.; Thauer, R., The exchange activities of [Fe] hydrogenase (iron–sulfur-cluster-free hydrogenase) from methanogenic archaea in comparison with the exchange activities of [FeFe] and [NiFe] hydrogenases. JBIC, J. Biol. Inorg. Chem. 2008, 13 (1), 97-106.
    15. Tard, C.; Pickett, C. J., Structural and Functional Analogues of the Active Sites of the [Fe]-, [NiFe]-, and [FeFe]-Hydrogenases. Chem. Rev. 2009, 109 (6), 2245-2274.
    16. Kubas, G. J., Fundamentals of H2 Binding and Reactivity on Transition Metals Underlying Hydrogenase Function and H2 Production and Storage. Chem. Rev. 2007, 107 (10), 4152-4205.
    17. Yang, X.; Hall, M. B., Trigger Mechanism for the Catalytic Hydrogen Activation by Monoiron (Iron−Sulfur Cluster-Free) Hydrogenase. J. Am. Chem. Soc. 2008, 130 (43), 14036-14037.
    18. Wang, X.; Li, Z.; Zeng, X.; Luo, Q.; Evans, D. J.; Pickett, C. J.; Liu, X., The iron centre of the cluster-free hydrogenase (Hmd): low-spin Fe(ii) or low-spin Fe(0)? Chem. Commun. 2008, (30), 3555-3557.
    19. Obrist, B. V.; Chen, D.; Ahrens, A.; Schünemann, V.; Scopelliti, R.; Hu, X., An Iron Carbonyl Pyridonate Complex Related to the Active Site of the [Fe]-Hydrogenase (Hmd). Inorg. Chem. 2009, 48 (8), 3514-3516.
    20. Guo, Y.; Wang, H.; Xiao, Y.; Vogt, S.; Thauer, R. K.; Shima, S.; Volkers, P. I.; Rauchfuss, T. B.; Pelmenschikov, V.; Case, D. A.; Alp, E. E.; Sturhahn, W.; Yoda, Y.; Cramer, S. P., Characterization of the Fe Site in Iron−Sulfur Cluster-Free Hydrogenase (Hmd) and of a Model Compound via Nuclear Resonance Vibrational Spectroscopy (NRVS). Inorg. Chem. 2008, 47 (10), 3969-3977.
    21. Hsu, H. F.; Peng, W. Y.; Li, Z. Y.; Wu, R. R.; Liao, J. H.; Wang, Y.; Liu, Y. H.; Shieh, M. S.; Kuo, T. S., Synthesis and structural characterization of dimolybdenum(IV) and molybdenum(VI) complexes with trisbenzenethiolatophosphine ligands. Inorg. Chim. Acta 2005, 358 (6), 2149-2154.
    22. Sung, H.-M., A Study on the Structures of Copper Thioaminophosphine Complexes and Their Reactivity toward Alkynes. 國立中山大學化學研究所碩士論文 2002.
    23. Noda, K.; Sasaki, T.; Iwatsuki, S.; Kashiwabara, K.; Suzuki, T.; Takagi, H. D., Syntheses and first structural analyses of Cu(I)–PS complexes with bidentate 1,1-diphenyl-1-phospha-4-thiapentane (mtdpp) and quadridentate 5,9-diphenyl-5,9-diphospha-2,12-dithiatridecane (2,3,2-SPPS): successful synthetic route for monomeric [Cu(mtdpp)2]BF4 and dimeric [Cu2(2,3,2-SPPS)2](BF4)2. Inorg. Chim. Acta 2004, 357 (2), 526-532.
    24. Genge, A. R. J.; Gibson, A. M.; Guymer, N. K.; Reid, G., Structural and spectroscopic studies on copper, silver and gold complexes of mixed phosphathia ligands and their chalcogenide derivatives. J. Chem. Soc., Dalton Trans. 1996, (21), 4099-4107.
    25. Umemoto, T.; Ishihara, S., Effective methods for preparing S-(trifluoromethyl)dibenzothiophenium salts. J. Fluorine Chem. 1998, 92 (2), 181-187.
    26. Long, R. J.; Jones, D. J.; Gibson, V. C.; White, A. J. P., Zirconium Complexes Containing Tetradentate O,P,P,O Ligands: Ethylene and Propylene Polymerization Studies. Organometallics 2008, 27 (22), 5960-5967.
    27. Huang, C. M., Development of the Tetradentate Diphosphanyl-bisbenzenethiolate S,P,P,S ligand: Synthesis and Characterization of a Dicopper Complex with S,P,P,S ligand. 國立成功大學化學研究所碩士論文 2014.
    28. Takács, J.; Soós, E.; Nagy-Magos, Z.; Markó, L.; Gervasio, G.; Hoffmann, T., Synthesis and molecular structure of carbonyl derivatives of iron(II) thiolates containing nitrogen-donor ligands. Inorg. Chim. Acta 1989, 166 (1), 39-46.
    29. Liaw, W.-F.; Chen, C.-H.; Lee, G.-H.; Peng, S.-M., Iron Pyridine-2-thiolate Complexes:  Interconversion of [Fe0(CO)4(SC5H4N)]-, cis-[FeII(CO)2(SC5H4N)2], and [FeII(SC5H4N)3]. Organometallics 1998, 17 (11), 2370-2372.
    30. Mauro, A. E.; Casagrande Jr, O. L.; Nogueira, V. M.; Santos, R. H. A.; Gambardella, M. T. P.; Lechat, J. R.; Filho, M. F. J., Reaction of pentacarbonyliron with a nitrogen heterocycle. X-ray crystal structure of bis[(carbonyl)(quinoline-2-thiolate-N,S)]iron(II). Polyhedron 1993, 12 (3), 297-301.
    31. Sadique, A. R.; Brennessel, W. W.; Holland, P. L., Reduction of CO2 to CO Using Low-Coordinate Iron:  Formation of a Four-Coordinate Iron Dicarbonyl Complex and a Bridging Carbonate Complex. Inorg. Chem. 2008, 47 (3), 784-786.
    32. Lyon, E. J.; Shima, S.; Boecher, R.; Thauer, R. K.; Grevels, F.-W.; Bill, E.; Roseboom, W.; Albracht, S. P. J., Carbon Monoxide as an Intrinsic Ligand to Iron in the Active Site of the Iron−Sulfur-Cluster-Free Hydrogenase H2-Forming Methylenetetrahydromethanopterin Dehydrogenase As Revealed by Infrared Spectroscopy. J. Am. Chem. Soc. 2004, 126 (43), 14239-14248.
    33. Nguyen, L. M.; Dellinger, M. E.; Lee, J. T.; Quinlan, R. A.; Rheingold, A. L.; Pike, R. D., Convenient synthesis of copper (I) thiolates and related compounds. Inorg. Chim. Acta 2005, 358 (4), 1331-1336.

    下載圖示 校內:2020-08-10公開
    校外:2020-08-10公開
    QR CODE