| 研究生: |
珇睿.巴阿里甕 Cudjuy, paalingulj |
|---|---|
| 論文名稱: |
重構漂流:3D掃描非標準材料機器人加工 Reconstructing Driftwood:3D Scanning and Robotic Fabrication for Non-standard Materials |
| 指導教授: |
沈揚庭
Shen, Yang-Ting |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 130 |
| 中文關鍵詞: | 非標準材 、3D掃描 、演算設計 、機械手臂 、數位加工 |
| 外文關鍵詞: | Non-standard materials, 3D scanning, Parametric design, Robotic arm, Digital fabrication |
| 相關次數: | 點閱:15 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
當代建築設計的發展趨勢,越來越傾向透過演算設計,利用標準化材料構築不規則的建築形體,以追求形式上的複雜性。在此背景下,本文提出一種替代性方法,旨在有效運用非標準材料,結合幾何優化技術,實現更具彈性與創造性的建築設計方案。此方法不僅擴展了建築設計的可能性,也促進了材料運用的多樣性。透過直接利用非標準材料的獨特形態,無需經過高耗能的工業加工,即可轉化為建築構造元素,不僅提升了設計與製作的效率,也實現了更高的永續性目標。
本研究以三個主要構面組成機械手臂輔助的自適應工法:(1) 非標準材料的虛實放樣、(2)庫存匹配設計,以及 (3) 機械手臂的數位加工。在設計階段,融入3D掃描技術,將複雜的非標準材料關係簡化為線架構,並置入結構確定的建築形體中,使設計者能專注於型態的設計與製造階段的銜接。本研究運用電腦輔助製造軟體(Fusion 360)及機械手臂的路徑生成程式(Grasshopper中的KUKA|prc),使製造過程的加工路徑可視化,並模擬碰撞,從而達到木材的精準加工。最終,利用機械手臂的六軸靈活性,通過多向度的加工路徑來解決複雜榫接型式在加工過程中的挑戰。
實驗成果表,本研究提出之掃描—設計—製造整合流程可有效應用於不規則木材的結構建構中。透過實體原型製作驗證,機械手臂能精準加工來自實際掃描之木材構件,並完成組裝,展現高度的製造精度與接合強度。此結果證實本方法具備在非標準材料建築構造應用中的可行性與發展潛力,為未來永續建築與循環利用提供一種具操作性的技術路徑。
Contemporary architectural design increasingly trends toward the use of parametric design to construct irregular architectural forms using standardized materials, aiming to achieve formal complexity. Against this backdrop, this study proposes an alternative approach that effectively utilizes non-standard materials in combination with geometric optimization techniques, enabling more flexible and creative architectural solutions. This method not only expands the possibilities of architectural design but also promotes material diversity. By directly leveraging the unique forms of non-standard materials without the need for energy-intensive industrial processing, these materials can be transformed into architectural components, thereby enhancing both the efficiency and sustainability of the design and fabrication processes.
This research develops a robotic-assisted adaptive fabrication method composed of three main aspects: (1) digital–physical prototyping of non-standard materials, (2) inventory-based matching design, and (3) digital fabrication via robotic arms. In the design phase, 3D scanning technology is integrated to simplify the complex relationships of irregular materials into linear frameworks, which are then embedded within a structurally defined architectural form. This allows designers to focus on the development of form and its transition into fabrication. The study utilizes computer-aided manufacturing software (Fusion 360) along with robotic toolpath generation plugins (KUKA|prc in Grasshopper), enabling visualization of toolpaths and collision simulation, thereby achieving precise machining of timber. Ultimately, the six-axis flexibility of the robotic arm is employed to address the challenges of fabricating complex joinery through multi-directional machining strategies.
Experimental results demonstrate that the proposed Scan–Design–Fabrication integrated workflow can be effectively applied to structural construction using irregular timber. Through the fabrication of physical prototypes, robotic arms were able to precisely machine scanned timber elements and successfully assemble them, showcasing high accuracy and joint integrity. These results confirm the feasibility and potential of this method for architectural applications involving non-standard materials, offering a viable technological pathway for future sustainable architecture and material reuse.
1. Allner, L., Kroehnert, D., & Rossi, A. (2019, October). Natural form(s): Case study of a spatial framework composed of naturally grown forked branches [Conference paper]. ResearchGate. https://www.researchgate.net/publication/337363627
2. Amtsberg, F., Huang, Y., Marshall, D. J., Gata, K. M., & Mueller, C. (2020). Structural up-cycling: matching digital and natural geometry. Advances in Architectural Geometry.
3. Andreea Cutieru. (2020, May 29). An overview of digital fabrication in architecture. ArchDaily. https://www.archdaily.com/940530/an-overview-of-digital-fabrication-in-architecture
4. Asada, H., & Kanade, T. (1983). Design of Direct-Drive Mechanical Arms. Journal of Vibration, Acoustics, Stress, and Reliability in Design, 105(3), 312-316. https://doi.org/10.1115/1.3269106
5. Brütting, J., Senatore, G., & Fivet, C. (2018). Optimization Formulations for the Design of Low Embodied Energy Structures Made from Reused Elements (Vol. 10863). https://doi.org/10.1007/978-3-319-91635-4_8
6. Brütting, J., Senatore, G., Schevenels, M., & Fivet, C. (2020). Optimum Design of Frame Structures From a Stock of Reclaimed Elements. Frontiers in Built Environment, 6. https://doi.org/10.3389/fbuil.2020.00057
7. Brütting, J., Vandervaeren, C., Senatore, G., Temmerman, N., & Fivet, C. (2020). Environmental impact minimization of reticular structures made of reused and new elements through Life Cycle Assessment and Mixed-Integer Linear Programming. Energy and Buildings, 215, 109827. https://doi.org/10.1016/j.enbuild.2020.109827
8. Caneparo, L., Cerrato, A., & Winkless, C. (2014). Digital Fabrication in Architecture, Engineering and Construction. https://doi.org/10.1007/978-94-007-7137-6
9. Chen, J., & Clarke, K. (2016). Rapid 3D modeling using photogrammetry applied to Google Earth.
10. Chen, Z., Zhang, X., & Hu, M. (2020). Challenges and advancements in laser scanning technology: Applications in manufacturing and digital archiving. International Journal of Advanced Manufacturing Technology, 105(11-12), 4503-4515.
11. Cilento, K. (2010, September 29). Wave Pavilion / MacDowell.Tomova. ArchDaily. https://www.archdaily.com/79693/wave-pavilion-macdowell-tomova
12. Cohen, I., & Johnson, J. (2001). Precision Coordinate Measurement and Machine Tools. Journal of Precision Engineering, 45(3), 287-303.
13. Cousin, T., Marshall, D., Pearl, N., Alkhayat, L., & Mueller, C. (2023). Integrating irregular inventories: Accessible technologies to design and build with nonstandard materials in architecture. Journal of Physics: Conference Series, 2600, 192004. https://doi.org/10.1088/1742-6596/2600/19/192004
14. Dell’Endice, A., Bouten, S., Mele, T., & Block, P. (2023). Structural design and engineering of Striatus, an unreinforced 3D-concrete-printed masonry arch bridge. Engineering Structures, 292, 116534. https://doi.org/10.1016/j.engstruct.2023.116534
15. Ebrahim, M. (2014). 3D LASER SCANNERS: HISTORY, APPLICATIONS, AND FUTURE. https://doi.org/10.13140/2.1.3331.3284
16. Fan, J., Liu, X., & Zhang, S. (2019). Application of laser scanning in the measurement of complex surfaces and large-scale structures. Measurement Science and Technology, 30(3), 175-185.
17. Fujitani, Y., & Fujii, D. (2000). Optimum structural design of steel plane frame under the limited stocks of members. In Proceedings of the RILEM/CIB/ISO International Symposium, Integrated Life-Cycle Design of Materials and Structures (pp. 198-202).
18. Gasparetto, A., & Scalera, L. (2019a). A Brief History of Industrial Robotics in the 20th Century. Advances in Historical Studies, 08(01), 24-35. https://doi.org/10.4236/ahs.2019.81002
19. Gasparetto, A., & Scalera, L. (2019b). From the Unimate to the Delta Robot: The Early Decades of Industrial Robotics. In Explorations in the History and Heritage of Machines and Mechanisms (pp. 284-295). https://doi.org/10.1007/978-3-030-03538-9_23
20. Gramazio, Kohler. (2008). Digital Materiality in architecture.
21. Huang, Y., Alkhayat, L., De Wolf, C., & Mueller, C. (2021). Algorithmic circular design with reused structural elements: method and tool. International fib Symposium - Conceptual Design of Structures 2021.
22. Inzerillo, L., & Roberts, R. (2019). 3D Image Based Modelling Using Google Earth Imagery for 3D Landscape Modelling. In Proceedings of the 1st International and Interdisciplinary Conference on Digital Environments for Education, Arts and Heritage (pp. 627-634). https://doi.org/10.1007/978-3-030-12240-9_65
23. Kayser, M., Cai, L., Falcone, S., Bader, C., Inglessis, N., Darweesh, B., & Oxman, N. (2018). FIBERBOTS: an autonomous swarm-based robotic system for digital fabrication of fiber-based composites. Construction Robotics, 2. https://doi.org/10.1007/s41693-018-0013-y
24. Khodadadi, A., & von Buelow, P. (2022). Design exploration by using a genetic algorithm and the Theory of Inventive Problem Solving (TRIZ). Automation in Construction, 141. https://doi.org/10.1016/j.autcon.2022.104354
25. Kloft, H., Baghdadi, A., Ledderose, L., Eschenbach, M. B., Tessmann, O., Kuhn, C., & Wagner, A.-K. (2024). Towards a Hybrid Modular Construction System Reusing Precast Concrete Components. In Fabricate 2024 (pp. 106-113). https://doi.org/10.2307/jj.11374766.17
26. Larsson, M., Yoshida, H., & Igarashi, T. (2019). Human-in-the-loop fabrication of 3D surfaces with natural tree branches Proceedings of the ACM Symposium on Computational Fabrication.
27. Leclerc, M.-A., Bass, J., Labbé, M., Dozois, D., Delisle, J., Rancourt, D., & Lussier Desbiens, A. (2023). NetherDrone: a tethered and ducted propulsion multirotor drone for complex underground mining stope inspections. Drone Systems and Applications, 11, 1-17. https://doi.org/10.1139/dsa-2023-0001
28. Li, W., Wu, Y., & Li, J. (2016). Advanced optical 3D scanning techniques for heritage preservation. Journal of Cultural Heritage, 22, 158-167.
29. Liu, K., Ding, H., Tang, G., Song, C., Liu, Y., Jiang, L., Zhao, B., & Gao, Y. (2018). Large-scale mapping of gully-affected areas: An approach integrating Google Earth images and terrain skeleton information. Geomorphology, 314. https://doi.org/10.1016/j.geomorph.2018.04.011
30. Liu, Z., Zhang, W., & Yang, B. (2017). Non-contact 3D scanning and its applications in precision measurement. Journal of Applied Optics, 56(15), 4036-4044.
31. Madsen, A. J. (2019). The SAM100: Analyzing Labor Productivity.
32. McDonald, J. A., Ryal, C. J., & Wimpenny, D. I. (2001). Rapid Prototyping Casebook. John Wiley & Sons Inc.
33. Mitterberger, D., Dörfler, K., Sandy, T., Salveridou, F., Hutter, M., Gramazio, F., & Kohler, M. (2020). Augmented bricklaying. Construction Robotics, 4(3-4), 151-161. https://doi.org/10.1007/s41693-020-00035-8
34. Mollica, Z. (2016). Tree Fork Truss: An Architecture of Inherent Forms.
35. Mollica, Z., & Self, M. (2016). Advances in Architectural Geometry 2015 - Tree Fork Truss: geometric Strategies for Exploiting Inherent Material Form. https://doi.org/10.3218/3778-4_11
36. Monier, V., Bignon, J. C., & Duchanois, G. (2013). Use of Irregular Wood Components to Design Non-Standard Structures. Advanced Materials Research, 671-674, 2337-2343. https://doi.org/10.4028/www.scientific.net/AMR.671-674.2337
37. Mostafavi, S., Kemper, B. N., & Du, C. (2019). Materializing hybridity in architecture: design to robotic production of multi-materiality in multiple scales. Architectural Science Review, 62(5), 424-437. https://doi.org/10.1080/00038628.2019.1653819
38. Nguyen, H. D., Kim, H., & Lee, T. (2018). Accuracy and limitations of non-contact 3D scanning for micro-scale measurements. International Journal of Precision Engineering and Manufacturing, 19(6), 789-799.
39. Pesci, A., Casula, G., & Boschi, E. (2011). Laser scanning the Garisenda and Asinelli towers in Bologna (Italy): Detailed deformation patterns of two ancient leaning buildings. Journal of Cultural Heritage, 12(2), 117-127. https://doi.org/10.1016/j.culher.2011.01.002
40. Remondino, F., Nocerino, E., Toschi, I., & Menna, F. (2017). A CRITICAL REVIEW OF AUTOMATED PHOTOGRAMMETRIC PROCESSING OF LARGE DATASETS. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W5, 591-599. https://doi.org/10.5194/isprs-archives-XLII-2-W5-591-2017
41. Scheinman, V. (1973). Design of a Computer Controlled Manipulator. (PhD Thesis). Stanford University. http://www.dtic.mil/docs/citations/AD0708069
42. Settimi, A., Gamerro, J., & Weinand, Y. (2022). Augmented-reality-assisted timber drilling with smart retrofitted tools. Automation in Construction, 139. https://doi.org/10.1016/j.autcon.2022.104272
43. Settimi, A., Vestartas, P., Gamerro, J., & Weinand, Y. (2022). Cockroach: an Open-source Tool for Point Cloud Processing in CAD. Proceedings of the 27th Conference on Computer Aided Architectural Design Research in Asia (CAADRIA) [Volume 2]
44. Settimi, A., Wang, Q., Andò, E., Gamerro, J., Beyer, K., & Weinand, Y. (2023). Projector-based augmented stacking framework for irregularly shaped objects. Construction Robotics, 7(2), 159-175. https://doi.org/10.1007/s41693-023-00099-2
45. Vercruysse, E., Mollica, Z., & Devadass, P. (2019). Altered Behaviour: The Performative Nature of Manufacture Chainsaw Choreographies + Bandsaw Manoeuvres. In Robotic Fabrication in Architecture, Art and Design 2018 (pp. 309-319). https://doi.org/10.1007/978-3-319-92294-2_24
46. Xie, W., Zhang, Y., & Lu, W. (2010). Challenges and Advances in Contact Measurement for Manufacturing Applications. International Journal of Advanced Manufacturing Technology, 46(3-4), 273-280.
47. Yen, C.-C. (2022). kuka_robot_driver_interfaces [Computer software]. RCCN Robotics Lab. https://github.com/rccn-dev/kuka_robot_driver_interfaces
48. Zainuddin Lubis, M., Anurogo, W., Gustin, O., Hanafi, A., Timbang, D., Rizki, F., Saragih, D., Kartini, I., Panjaitan, H., Yanti, M., & Taki, H. (2017). Interactive modelling of buildings in Google Earth and GIS: A 3D tool for Urban Planning (Tunjuk Island, Indonesia). Journal of Applied Geospatial Information, 1, 44-48.
49. Zamalloa, I., Kojcev, R., Hernandez, A., Muguruza, I., Usategui, L., Bilbao, A., & Mayoral, V. (2017). Dissecting Robotics - historical overview and future perspectives. https://doi.org/10.48550/arXiv.1704.08617