簡易檢索 / 詳目顯示

研究生: 劉嫣婷
Liu, Yen-Ting
論文名稱: 利用生物仿生表面改質技術增進人工牙根材料生物反應之研究
Employ Bio-Inspired Surface Modification to Enhance Biological Response of Dental Implant Materials
指導教授: 呂傳盛
Lui, Truan-Sheng
共同指導教授: 李澤民
Lee, Tzer-Min
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 155
中文關鍵詞: 氧化鋯多巴胺微弧氧化生物反應
外文關鍵詞: zirconia, titanium, DOPA, micro-arc oxidation (MAO), strontium, manganese, cell response
相關次數: 點閱:110下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今人工牙根的發展是為了口腔咀嚼功能的修復及取代正常牙齒,另外亦隨著民眾對於美觀的要求,而讓人工牙根的需求大增,因此為了能夠縮短療程,縮短人工植體與人體組織所需的骨整合時間就變得格外重要。
    在人工牙根材料當中,由於氧化鋯與鈦金屬具有優良的機械性質以及化學穩定性,因此廣泛的使用於人工牙根上;但是在材料分類上,氧化鋯與鈦金屬皆屬於生物惰性材料,因此當植體植入後並無法與人體組織產生化學鍵結,限制其在生物醫學領域的應用。目前有許多表面改質的技術著重應用於人工牙根的表面改質上,以促進植體植入後,骨組織與植體間的初期骨整合能力。本研究係利用海洋中的貽貝,其分泌的黏附物質多巴胺與生醫植入材做結合,將此貽貝黏附物質應用於植體表面以改變表面特性,此外,實驗中進一步利用表面改質技術製備出具有模擬骨頭立體結構之三維多孔表面,以增進植入材植入後之骨整合性。
    在本研究的第一部份中,利用貽貝黏附物質多巴胺可於氧化鋯表面塗佈一層具有生物相容性的仿生層,其製程簡單、效率高,且無須使用額外溶劑,同時藉由提升反應過程的溫度,可控制仿生層的表面特性,增加塗層厚度,進而影響骨母細胞初期的貼附能力。目前鍶已於臨床治療骨質疏鬆症上所使用,因此研究中進一步於多巴胺仿生層的聚合反應中添加微量元素鍶,實驗結果顯示,在氧化鋯表面塗佈一層含有鍶元素的多巴胺仿生層,將有助於增進骨母細胞的分化反應,此外,隨著鍶元素濃度的增加,多巴胺仿生層的厚度亦有所提升,顯示出鍶離子有助於多巴胺的聚合反應。
    在本研究的第二部份中,於鈦金屬表面塗佈有機-無機多層複合塗層進行表面改質,利用微弧陽極氧化技術於鈦金屬表面,形成類似人體骨頭結構之三維多孔形貌表面改質,並結合多巴胺仿生層形成多層複合塗層,其中多巴胺仿生層可促進初期的骨母細胞貼附及增生,接著由複合塗層中所釋放出的鍶離子將促進骨母細胞分化,同時經微弧陽極氧化技術所製造的三維多孔表面則提供人工牙根植入後機械穩定性的能力,結果顯示出此多層複合塗層有助於促進人工牙根表面與細胞間之生物反應。此外,藉由調整微弧陽極氧化過程中之電解液成分,將可有效改變材料表面氧化層之化學特性,亦可以使化學離子釋出,藉此改變材料表面之生物反應,將錳、鈣及磷元素搭配微弧陽極氧化法添加進入氧化層當中,以形成多孔且含有錳、鈣及磷離子之氧化層,實驗結果證實,鈦金屬表面可藉由調配過後之含有錳離子之電解液搭配微弧陽極氧化技術,製備出含有不同錳離子濃度的氧化層,其所形成之氧化層厚度、表面親水性、孔徑大小以及孔隙率,並不會因為錳離子濃度不同而有明顯之差異,然而,錳離子的添加將造成氧化層的化學組成改變,進而促進骨母細胞之分化。
    本研究結果顯示,結合兩種仿生改質方式於生物惰性材料,將可有效促進骨母細胞於人工牙根材料表面之活性,並有益於生醫材料之發展。本研究提出一個創新的概念,將有助應用於未來開發新的仿生材料以增進骨整合效應的研究上。

    Dental implant, a special biocompatible component serving with the rehabilitation of the damaged chewing apparatus due to loss of the natural teeth, is currently the most intensively developing field of dentistry. Today, the increasing demands from patients with missing teeth for masticatory function and aesthetic dissatisfaction of their replaced teeth to be restored and for shortening of the period of osseointegration of the implants.
    Zirconia and titanium have been widely used as a framework material in dental implants, due to their excellent mechanical properties and chemical stability. However, zirconia and titanium are categorized as bio-inert materials which make them difficult to achieve a chemical bond with living tissue and restricts their application in the field of biomedicine. Various forms of surface modification have been used to accelerate the initial osseointegration soon after implantation in order to improve the reactions of the tissue and shorten the healing period of the bone. In this study, a biologically inspired idea from mussels was used to establish a synthetic adhesive platform for medical-implant application. Moreover, three-dimensional structures with numerous craters were produced to mimic bone morphology and function in order to optimize the integration of the implant.
    In first part of this thesis, an easy, efficient, solvent-free process was proposed for the coating of DOPA film on a zirconia surface which was shown to increase the biocompatibility to osteoblasts. Specifically, the thickness of the coating and initial cell spreading ability were both enhanced by preparing samples at higher temperatures. Then, the study was subsequently related to the trace element strontium, which we did added into the DOPA polymerization process. Strontium has been attracting considerable attention for clinical applications to treat osteoporosis. The incorporation of strontium greatly increases osteoblast response, such as differentiation and mineralization in DOPA-coated zirconia. Interestingly, the level of DOPA is highly dependent on the strontium concentration, suggesting that strontium may promote DOPA polymerization.
    In the next part of this thesis, an organic-inorganic multilayer coating process was developed for the modification of titanium implants. A three-dimensional porous structure comprising strontium and micro-arc oxidized (MAO) titanium was covered with a film of DOPA to form a multilayer coating. The DOPA film facilitates the initial attachment and proliferation of cells. Cell differentiation is sequentially enhanced by the release of strontium from the coatings. Moreover, MAO process produced a much rougher surface with crater-like structures which provides early fixation and long-term mechanical stability. The results demonstrate the efficacy of the proposed coating process in enhancing the multi-biological function of implant surfaces to improve cellular characteristics. Moreover the surface properties were simply changed by adjusting the compositions of the electrolyte solutions that alters the local chemistry of the coatings and in so doing changes the biological properties of the MAO coating. A porous manganese-calcium-phosphate coating was prepared on titanium through MAO process. The manganese in electrolytes can be incorporated within MAO coatings in a dose dependent manner. Manganese concentration did not appear to have a significant effect on thickness, hydrophilicity, pore size, or overall porosity of the MAO coatings. However, the addition of manganese alters the local chemistry of the coatings and improve cell-mediated mineralization.
    All findings in this thesis indicated that combining the beneficial characteristics of both bio-inspired modifications shows considerable promise as a biomaterial for implants. These findings may give a new important insight into further advancing the research on exploring the impact of bio-inspired modifications on the degree of osseointegration.

    Abstract I 摘要 IV 誌謝 VI Contents VIII List of Tables XIII List of Figures XIV Chapter 1 Introduction 1 1-1 Overview 1 1-2 Research motivation 2 Chapter 2 Literature Review 6 2-1 Current endosseous dental implants 6 2-1-1 Titanium as an implant material 6 2-1-2 Zirconia as an implant material 8 2-2 Osseointegration and implant surface characteristics 9 2-2-1 Interaction between bone and implant surface 9 2-2-2 Chemical composition and topography of the implant surface 10 2-3 Surface modification for current endosseous dental implants 12 2-3-1 Surface modification of titanium 12 2-3-2 Surface modification of zirconia 14 2-4 Mussel-inspired surface modification 16 2-4-1 Mussel adhesion and DOPA 16 2-4-2 Polymerization mechanism of polyDOPA film 17 2-4-3 Biocompatibility and biodegradation of DOPA film 18 2-5 Micro-arc oxidation surface modification 19 2-6 Trace elements in human bone 20 2-6-1 Strontium 21 2-6-2 Manganese 23 Chapter 3 Materials and Methods 24 3-1 Materials 24 3-2 Experimental instruments 27 3-3 Preparation of specimens 28 3-3-1 Preparation of DOPA and Sr-DOPA film on zirconia 28 3-3-2 Preparation of SrCaP, and SrCaP-DOPA coatings on titanium 30 3-3-3 Preparation of MnCaP coatings on titanium 31 3-4 Characterization of coatings 32 3-4-1 Surface morphology and roughness 32 3-4-2 Surface wettability and surface chemistry 32 3-4-3 Phase composition 33 3-5 Bioactivity and ions release measurement 34 3-6 Protein adsorption assay 34 3-7 Osteoblastic cell responses 35 3-7-1 Morphology 35 3-7-2 Cytoskeleton development 35 3-7-3 Proliferation 36 3-7-4 ALP activity assay 36 3-7-5 Bone-related gene expression 37 3-8 Statistical analysis 37 Chapter 4 Enhanced Osteoblast Cell Response on Zirconia by Bio-Inspired Surface Modification 39 4-1 Introduction 39 4-2 Surface features of DOPA film coated zirconia 40 4-2-1 Morphological properties of DOPA film coated zirconia 40 4-2-2 Chemical composition and wettability of DOPA film coated zirconia 41 4-3 Protein adsorption on DOPA film coated zirconia 43 4-4 Cell response on DOPA film coated zirconia 44 4-4-1 Cell morphologies and cytoskeleton on DOPA film coated zirconia 44 4-4-2 Cell proliferation and differentiation on DOPA film coated zirconia 46 4-5 Surface features of Sr-DOPA film coated zirconia 48 4-5-1 Morphological properties of Sr-DOPA film coated zirconia 48 4-5-2 Chemical composition of Sr-DOPA film coated zirconia 49 4-5-3 Strontium ion release from Sr-DOPA film coated zirconia 49 4-6 Cell response on Sr-DOPA film coated zirconia 50 4-6-1 Morphologies and cytoskeleton on Sr-DOPA film coated zirconia 50 4-6-2 Differentiation on Sr-DOPA film coated zirconia 50 4-7 Summary 51 Chapter 5 Characterization of Porous Coatings through the Incorporation of Trace Elements and DOPA 52 5-1 Introduction 52 5-2 Surface features of DOPA on MAO coatings 53 5-2-1 Morphology and characteristics of DOPA film on MAO coatings 53 5-2-2 Chemical composition of DOPA film on MAO coatings 55 5-3 Biological properties of DOPA film on MAO coatings 56 5-3-1 Cell morphologies and cytoskeleton of DOPA film on MAO coatings 56 5-3-2 Cell proliferation and differentiation on MAO coatings further coated with strontium and DOPA 59 5-4 Surface features of MnCaP porous coatings 61 5-4-1 Morphology of MnCaP porous coatings 61 5-4-2 Chemical composition of MnCaP porous coatings 61 5-4-3 Phase composition of MnCaP porous coatings 63 5-4-4 Morphology and elemental distribution across MnCaP coatings 64 5-5 Biological properties of MnCaP porous coatings 66 5-5-1 Cell morphology and cytoskeleton on MnCaP porous coatings 66 5-5-2 Cell proliferation on MnCaP porous coatings 67 5-5-3 Bone-related genes expression of cells on MnCaP porous coatings 68 5-6 Summary 70 Chapter 6 Examination of the Surface and Material Properties for Cell Response 71 6-1 Introduction 71 6-2 Comparison of DOPA modified titanium and zirconia surface 72 6-3 Effect of strontium ions on the growth of osteoblast 73 6-4 Effect of strontium and manganese ions on the growth of osteoblast 74 Chapter 7 Conclusions 75 References 139

    [1] P.I. Brånemark, U. Breine, R. Adell, B.O. Hansson, J. Lindström, Å. Ohlsson. Intra-osseous anchorage of dental prostheses: I. experimental studies. Scand J Plast Reconstr Surg, 3 (1969) 81-100.
    [2] T. Albrektsson, J. Brunski, A. Wennerberg. A requiem for the periodontal ligament. Int J Prosthodont, 22 (2009) 120-122.
    [3] M. Esposito, J.M. Hirsch, U. Lekholm, P. Thomsen. Biological factors contributing to failures of osseointegrated oral implants. (II). etiopathogenesis. Eur J Oral Sci, 106 (1998) 721-764.
    [4] A. Wennerberg, T. Albrektsson. Suggested guidelines for the topographic evaluation of implant surfaces. Int J Oral Maxillofac Implants, 15 (2000) 331-344.
    [5] F. Zarone, S. Russo, R. Sorrentino. From porcelain-fused-to-metal to zirconia: clinical and experimental considerations. Dent Mater, 27 (2011) 83-96.
    [6] J. Chevalier. What future for zirconia as a biomaterial? Biomaterials, 27 (2006) 535-543.
    [7] E.D. Rekow, N.R. Silva, P.G. Coelho, Y. Zhang, P. Guess, V.P. Thompson. Performance of dental ceramics: challenges for improvements. J Dent Res, 90 (2011) 937-952.
    [8] R.J. Kohal, M. Bächle, W. Att, S. Chaar, B. Altmann, A. Renz, F. Butz. Osteoblast and bone tissue response to surface modified zirconia and titanium implant materials. Dent Mater, 29 (2013) 763-776.
    [9] R.K. Chintapalli, F.G. Marro, E. Jimenez-Pique, M. Anglada. Phase transformation and subsurface damage in 3Y-TZP after sandblasting. Dent Mater, 29 (2013) 566-572.
    [10] H. Lee, S.M. Dellatore, W.M. Miller, P.B. Messersmith. Mussel-inspired surface chemistry for multifunctional coatings. Science, 318 (2007) 426-430.
    [11] S.H. Ku, J. Ryu, S.K. Hong, H. Lee, C.B. Park. General functionalization route for cell adhesion on non-wetting surfaces. Biomaterials, 31 (2010) 2535-2541.
    [12] Y. Han, D. Chen, J. Sun, Y. Zhang, K. Xu. UV-enhanced bioactivity and cell response of micro-arc oxidized titania coatings. Acta Biomater, 4 (2008) 1518-1529.
    [13] H.J. Song, S.H. Park, S.H. Jeong, Y.J. Park. Surface characteristics and bioactivity of oxide films formed by anodic spark oxidation on titanium in different electrolytes. J Mater Process Tech, 209 (2009) 864-870.
    [14] H. Hu, X. Liu, C. Ding. Preparation and cytocompatibility of Si-incorporated nanostructured TiO2 coating. Surf Coat Tech, 204 (2010) 3265-3271.
    [15] H. Hu, W. Zhang, Y. Qiao, X. Jiang, X. Liu, C. Ding. Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium. Acta Biomater, 8 (2012) 904-915.
    [16] N. Tsukimura, N. Kojima, K. Kubo, W. Att, K. Takeuchi, Y. Kameyama, H. Maeda, T. Ogawa. The effect of superficial chemistry of titanium on osteoblastic function. J Biomed Mater Res A, 84A (2008) 108-116.
    [17] Y. Sugita, K. Ishizaki, F. Iwasa, T. Ueno, H. Minamikawa, M. Yamada, T. Suzuki, T. Ogawa. Effects of pico-to-nanometer-thin TiO2 coating on the biological properties of microroughened titanium. Biomaterials, 32 (2011) 8374-8384.
    [18] D. Buser, N. Broggini, M. Wieland, R.K. Schenk, A.J. Denzer, D.L. Cochran, B. Hoffmann, A. Lussi, S.G. Steinemann. Enhanced bone apposition to a chemically modified SLA titanium surface. J Denl Res, 83 (2004) 529-533.
    [19] F. Rupp, L. Scheideler, N. Olshanska, M. de Wild, M. Wieland, J. Geis-Gerstorfer. Enhancing surface free energy and hydrophilicity through chemical modification of microstructured titanium implant surfaces. J Biomed Mater Res A, 76 (2006) 323-334.
    [20] B. Friberg, T. Jemt. Clinical experience of TiUnite implants: a 5-year cross-sectional, retrospective follow-up study. Clin Implant Dent Relat Res, 12 Suppl 1 (2010) e95-103.
    [21] R. Yamauchi, A. Morita, T. Tsuji. Pacemaker dermatitis from titanium. Contact Dermatitis, 42 (2000) 52-53.
    [22] C. Piconi, G. Maccauro. Zirconia as a ceramic biomaterial. Biomaterials, 20 (1999) 1-25.
    [23] M. Hisbergues, S. Vendeville, P. Vendeville. Zirconia: established facts and perspectives for a biomaterial in dental implantology, J Biomed Mater Res B Appl Biomater, 88B (2009) 519-529.
    [24] Y. Akagawa, Y. Ichikawa, H. Nikai, H. Tsuru. Interface histology of unloaded and early loaded partially stabilized zirconia endosseous implant in initial bone healing. J Prost Dent, 69 (1993) 599-604.
    [25] M. Gahlert, S. Roehling, C.M. Sprecher, H. Kniha, S. Milz, K. Bormann. In vivo performance of zirconia and titanium implants: a histomorphometric study in mini pig maxillae. Clin Oral Implants Res, 23 (2012) 281-286.
    [26] R.J. Kohal, D. Weng, M. Bachle, J.R. Strub. Loaded custom-made zirconia and titanium implants show similar osseointegration: an animal experiment. J Periodontol, 75 (2004) 1262-1268.
    [27] D.F. Williams, E.S.F. Biomaterials. Definitions in biomaterials: proceedings of a consensus conference of the European Society for Biomaterials, Chester, England, March 3-5, 1986.
    [28] S. Raghavendra, M.C. Wood, T.D. Taylor. Early wound healing around endosseous implants: a review of the literature. Int J Oral Maxillofac Implants, 20 (2005) 425-431.
    [29] M. Bächle, R.J. Kohal. A systematic review of the influence of different titanium surfaces on proliferation, differentiation and protein synthesis of osteoblast-like MG63 cells. Clin Oral Implants Res, 15 (2004) 683-692.
    [30] R.A. Hartvig, M. van de Weert, J. Østergaard, L. Jorgensen, H. Jensen. Protein adsorption at charged surfaces: the role of electrostatic interactions and interfacial charge regulation, Langmuir, 27 (2011) 2634-2643.
    [31] R.A. Gittens, T. McLachlan, R. Olivares-Navarrete, Y. Cai, S. Berner, R. Tannenbaum, Z. Schwartz, K.H. Sandhage, B.D. Boyan. The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation. Biomaterials, 32 (2011) 3395-3403.
    [32] C.B. Johansson, C. Gretzer, R. Jimbo, I. Mattisson, E. Ahlberg. Enhanced implant integration with hierarchically structured implants: a pilot study in rabbits. Clin Oral Implants Res, 23 (2012) 943-953.
    [33] D.A. Puleo, A. Nanci. Understanding and controlling the bone-implant interface. Biomaterials, 20 (1999) 2311-2321.
    [34] C.Y. Yang, C.R. Chen, E. Chang, T.M. Lee. Characteristics of hydroxyapatite coated titanium porous coatings on Ti6Al4V substrates by plasma sprayed method. J Biomed Mater Res B Appl Biomater, 82B (2007) 450-459.
    [35] K. De Groot, R. Geesink, C.P.A.T. Klein, P. Serekian. Plasma sprayed coatings of hydroxylapatite. J Biomed Mater Res, 21 (1987) 1375-1381.
    [36] B. Bracci, P. Torricelli, S. Panzavolta, E. Boanini, R. Giardino, A. Bigi. Effect of Mg2+, Sr2+, and Mn2+ on the chemico-physical and in vitro biological properties of calcium phosphate biomimetic coatings. J Inorg Biochem, 103 (2009) 1666-1674.
    [37] L.C. Palmer, C.J. Newcomb, S.R. Kaltz, E.D. Spoerke, S.I. Stupp. Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chem Rev, 108 (2008) 4754-4783.
    [38] B.W. Callen, B.F. Lowenberg, S. Lugowski, R.N. Sodhi, J.E. Davies. Nitric acid passivation of Ti6Al4V reduces thickness of surface oxide layer and increases trace element release. J Biomed Mater Res, 29 (1995) 279-290.
    [39] T.M. Lee, E. Chang, C.Y. Yang. A comparison of the surface characteristics and ion release of Ti6Al4V and heat-treated Ti6Al4V. J Biomed Mater Res, 50 (2000) 499-511.
    [40] T.M. Lee. Effect of passivation and surface modification on the dissolution behavior and nano-surface characteristics of Ti-6Al-4V in Hank/EDTA solution. J Mater Sci Mater Med, 17 (2006) 15-27.
    [41] D. Yamashita, M. Machigashira, M. Miyamoto, H. Takeuchi, K. Noguchi, Y. Izumi, S. Ban. Effect of surface roughness on initial responses of osteoblast-like cells on two types of zirconia. Dent Mater J, 28 (2009) 461-470.
    [42] T. Kosmac, C. Oblak, P. Jevnikar, N. Funduk, L. Marion. The effect of surface grinding and sandblasting on flexural strength and reliability of Y-TZP zirconia ceramic. Dent Mater, 15 (1999) 426-433.
    [43] R.K. Chintapalli, F.G. Marro, E. Jimenez-Pique, M. Anglada. Phase transformation and subsurface damage in 3Y-TZP after sandblasting. Dent Mater, 29 (2013) 566-572.
    [44] Y. Han, Y. Yan, C. Lu, Y. Zhang, K. Xu. Bioactivity and osteoblast response of the micro-arc oxidized zirconia films. J Biomed Mater Res A, 88A (2009) 117-127.
    [45] J. Lee, J.H. Sieweke, N.A. Rodriguez, P. Schupbach, H. Lindstrom, C. Susin, U.M.E. Wikesjo. Evaluation of nano-technology-modified zirconia oral implants: a study in rabbits. J Clin Periodontol, 36 (2009) 610-617.
    [46] H.W. Kim, Y.M. Kong, C.J. Bae, Y.J. Noh, H.E. Kim. Sol-gel derived fluor-hydroxyapatite biocoatings on zirconia substrate. Biomaterials, 25 (2004) 2919-2926.
    [47] W. Att, M. Takeuchi, T. Suzuki, K. Kubo, M. Anpo, T. Ogawa. Enhanced osteoblast function on ultraviolet light-treated zirconia. Biomaterials, 30 (2009) 1273-1280.
    [48] Z. Zhang, K. Wang, C. Bai, X. Li, X. Dang, C. Zhang. The influence of UV irradiation on the biological properties of MAO-formed ZrO2. Colloids Surf B Biointerfaces, 89 (2012) 40-47.
    [49] M. Yu, J. Hwang, T.J. Deming. Role of L-3,4-dihydroxyphenylalanine in mussel adhesive proteins. J Am Chem Soc, 121 (1999) 5825-5826.
    [50] M.J. Sever, J.T. Weisser, J. Monahan, S. Srinivasan, J.J. Wilker. Metal-mediated cross-linking in the generation of a marine-mussel adhesive. Angew Chem Int Ed, 43 (2004) 448-450.
    [51] Y. Li, M. Qin, Y. Li, Y. Cao, W. Wang. Single molecule evidence for the adaptive binding of DOPA to different wet surfaces. Langmuir, 30 (2014) 4358-4366.
    [52] M.E. Lynge, R. van der Westen, A. Postma, B. Stadler. Polydopamine–a nature-inspired polymer coating for biomedical science. Nanoscale, 3 (2011) 4916-4928.
    [53] S. Hong, Y.S. Na, S. Choi, I.T. Song, W.Y. Kim, H. Lee. Non-covalent self-assembly and covalent polymerization co-contribute to polydopamine formation. Adv Funct Mater, 22 (2012) 4711-4717.
    [54] S.H. Ku, J. Ryu, S.K. Hong, H. Lee, C.B. Park. General functionalization route for cell adhesion on non-wetting surfaces. Biomaterials, 31 (2010) 2535-2541.
    [55] C.K. Poh, Z. Shi, T.Y. Lim, K.G. Neoh, W. Wang. The effect of VEGF functionalization of titanium on endothelial cells in vitro. Biomaterials, 31 (2010) 1578-1585.
    [56] R. Luo, L. Tang, J. Wang, Y. Zhao, Q. Tu, Y. Weng, R. Shen, N. Huang. Improved immobilization of biomolecules to quinone-rich polydopamine for efficient surface functionalization. Colloids Surf B Biointerfaces, 106 (2013) 66-73.
    [57] Y.M. Shin, Y.B. Lee, S.J. Kim, J.K. Kang, J.C. Park, W. Jang, H. Shin. Mussel-inspired immobilization of vascular endothelial growth factor (VEGF) for enhanced endothelialization of vascular grafts. Biomacromolecules, 13 (2012) 2020-2028.
    [58] Y.B. Lee, Y.M. Shin, J.H. Lee, I. Jun, J.K. Kang, J.C. Park, H. Shin. Polydopamine-mediated immobilization of multiple bioactive molecules for the development of functional vascular graft materials. Biomaterials, 33 (2012) 8343-8352.
    [59] E. Ko, K. Yang, J. Shin, S.W. Cho. Polydopamine-assisted osteoinductive peptide immobilization of polymer scaffolds for enhanced bone regeneration by human adipose-derived stem cells, Biomacromolecules, 14 (2013) 3202-3213.
    [60] D. Xu, W. Yang, Y. Hu, Z. Luo, J. Li, Y. Hou, Y. Liu, K. Cai. Surface functionalization of titanium substrates with cecropin B to improve their cytocompatibility and reduce inflammation responses. Colloids Surf B Biointerfaces, 110 (2013) 225-235.
    [61] K. Wang, Y. Luo. Defined surface immobilization of glycosaminoglycan molecules for probing and modulation of cell-material interactions. Biomacromolecules, 14 (2013) 2373-2382.
    [62] C.Y. Chien, T.Y. Liu, W.H. Kuo, M.J. Wang, W.B. Tsai. Dopamine-assisted immobilization of hydroxyapatite nanoparticles and RGD peptides to improve the osteoconductivity of titanium. J Biomed Mater Res A, 101A (2013) 740-747.
    [63] Y. Sun, Y. Deng, Z. Ye, S. Liang, Z. Tang, S. Wei. Peptide decorated nano-hydroxyapatite with enhanced bioactivity and osteogenic differentiation via polydopamine coating. Colloids Surf B Biointerfaces, 111 (2013) 107-116.
    [64] D. Xie, K. Cai, Y. Hu, Z. Luo. Surface engineering of titanium substrates with chitosan-atorvastatin conjugate for reduced inflammation responses and improved cytocompatibility. J Biomed Mater Res A, 101A (2013) 2005-2014.
    [65] A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S.J. Dowey. Plasma electrolysis for surface engineering. Surf Coat Tech, 122 (1999) 73-93.
    [66] F. Jin, P.K. Chu, K. Wang, J. Zhao, A. Huang, H. Tong. Thermal stability of titania films prepared on titanium by micro-arc oxidation. Mat Sci Eng A, 476 (2008) 78-82.
    [67] H.T. Chen, C.H. Hsiao, H.Y. Long, C.J. Chung, C.H. Tang, K.C. Chen, J.L. He. Micro-arc oxidation of β-titanium alloy: structural characterization and osteoblast compatibility. Surf Coat Tech, 204 (2009) 1126-1131.
    [68] H.T. Chen, C.J. Chung, T.C. Yang, I.P. Chiang, C.H. Tang, K.C. Chen, J.L. He. Osteoblast growth behavior on micro-arc oxidized β-titanium alloy. Surf Coat Tech, 205 (2010) 1624-1629.
    [69] L. Agata De Sena, M. Calixto De Andrade, A. Malta Rossi, G. de Almeida Soares. Hydroxyapatite deposition by electrophoresis on titanium sheets with different surface finishing. J Biomed Mater Res, 60 (2002) 1-7.
    [70] P.J. Marie. Effective doses for strontium ranelate. Osteoporos Int, 19 (2008) 1813-1813.
    [71] K. Qiu, X.J. Zhao, C.X. Wan, C.S. Zhao, Y.W. Chen. Effect of strontium ions on the growth of ROS17/2.8 cells on porous calcium polyphosphate scaffolds. Biomaterials, 27 (2006) 1277-1286.
    [72] D.J. Lin, M.T. Tsai, T.M. Shieh, H.L. Huang, J.T. Hsu, Y.C. Ko, L.J. Fuh. In vitro antibacterial activity and cytocompatibility of bismuth doped micro-arc oxidized titanium. J Biomater Appl, 27 (2013) 553-563.
    [73] S. cheng, D. Wei, Y. Zhou, H. Guo. Characterization and properties of microarc oxidized coatings containing Si, Ca and Na on titanium. Ceram Int, 37 (2011) 1761-1768.
    [74] Y.T. Sul, C.B. Johansson, T. Albrektsson. Oxidized titanium screws coated with calcium ions and their performance in rabbit bone. Int J Oral Max Impl, 17 (2002) 625-634.
    [75] J.Y. Reginster, R. Deroisy, M. Dougados, I. Jupsin, J. Colette, C. Roux. Prevention of early postmenopausal bone loss by strontium ranelate: the randomized, two-year, double-masked, dose-ranging, placebo-controlled PREVOS trial. Osteoporos Int, 13 (2002) 925-931.
    [76] P.J. Meunier, D.O. Slosman, P.D. Delmas, J.L. Sebert, M.L. Brandi, C. Albanese, R. Lorenc, S. Pors-Nielsen, M.C. De Vernejoul, A. Roces, J.Y. Reginster. Strontium ranelate: dose-dependent effects in established postmenopausal vertebral osteoporosis–a 2-year randomized placebo controlled trial. J Clin Endocrinol Metab, 87 (2002) 2060-2066.
    [77] G. Bellof, E. Most, J. Pallauf. Concentration of copper, iron, manganese and zinc in muscle, fat and bone tissue of lambs of the breed German Merino Landsheep in the course of the growing period and different feeding intensities. J Anim Physiol Anim Nutr, 91 (2007) 100-108.
    [78] M.H. Kim, M.K. Choi. Seven dietary minerals (Ca, P, Mg, Fe, Zn, Cu, and Mn) and their relationship with blood pressure and blood lipids in healthy adults with self-selected diet, Biol Trace Elem Res, 153 (2013) 69-75.
    [79] I.E. Chesnick, J.A. Centeno, T.I. Todorov, A.E. Koenig, K. Potter. Spatial mapping of mineralization with manganese-enhanced magnetic resonance imaging. Bone, 48 (2011) 1194-1201.
    [80] F. Sima, G. Socol, E. Axente, I.N. Mihailescu, L. Zdrentu, S.M. Petrescu, I. Mayer. Biocompatible and bioactive coatings of Mn2+-doped beta-tricalcium phosphate synthesized by pulsed laser deposition. Appl Surf Sci, 254 (2007) 1155-1159.
    [81] A. Bigi, B. Bracci, F. Cuisinier, R. Elkaim, M. Fini, I. Mayer, I.N. Mihailescu, G. Socol, L. Sturba, P. Torricelli. Human osteoblast response to pulsed laser deposited calcium phosphate coatings. Biomaterials, 26 (2005) 2381-2389.
    [82] C. Paluszkiewicz, A. Slosarczyk, D. Pijocha, M. Sitarz, M. Bucko, A. Zima, A. Chroscicka, M. Lewandowska-Szumiel. Synthesis, structural properties and thermal stability of Mn-doped hydroxyapatite. J Mol Struct, 976 (2010) 301-309.
    [83] T. Kokubo, H. Takadama. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 27 (2006) 2907-2915.
    [84] Z. Ozkurt, E. Kazazoglu. Zirconia dental implants: a literature review. J Oral Implantol, 37 (2011) 367-376.
    [85] P.F. Manicone, P. Rossi Iommetti, L. Raffaelli. An overview of zirconia ceramics: basic properties and clinical applications. J Dent, 35 (2007) 819-826.
    [86] K. Yang, J.S. Lee, J. Kim, Y.B. Lee, H. Shin, S.H. Um, J.B. Kim, K.I. Park, H. Lee, S.W. Cho. Polydopamine-mediated surface modification of scaffold materials for human neural stem cell engineering. Biomaterials, 33 (2012) 6952-6964.
    [87] S. Haemers, G.J. Koper, G. Frens. Effect of oxidation rate on cross-linking of mussel adhesive proteins. Biomacromolecules, 4 (2003) 632-640.
    [88] Y.M. Shin, Y.B. Lee, H. Shin. Time-dependent mussel-inspired functionalization of poly(l-lactide-co-ɛ-caprolactone) substrates for tunable cell behaviors. Colloids Surf B Biointerfaces, 87 (2011) 79-87.
    [89] J. Chen, X. Chen, X. Yin, J. Ma, Z. Jiang. Bioinspired fabrication of composite pervaporation membranes with high permeation flux and structural stability. J Memb Sci, 344 (2009) 136-143.
    [90] Q. Wei, F. Zhang, J. Li, B. Li, C. Zhao. Oxidant-induced dopamine polymerization for multifunctional coatings. Polym Chem, 1 (2010) 1430-1433.
    [91] D.R. Dreyer, D.J. Miller, B.D. Freeman, D.R. Paul, C.W. Bielawski. Elucidating the structure of poly(dopamine). Langmuir, 28 (2012) 6428-6435.
    [92] H. Zeng, K.K. Chittur, W.R. Lacefield. Analysis of bovine serum albumin adsorption on calcium phosphate and titanium surfaces. Biomaterials, 20 (1999) 377-384.
    [93] C.J. Wilson, R.E. Clegg, D.I. Leavesley, M.J. Pearcy. Mediation of biomaterial-cell interactions by adsorbed proteins: a review. Tissue Eng, 11 (2005) 1-18.
    [94] H.W. Kim, J.C. Knowles, L.H. Li, H.E. Kim. Mechanical performance and osteoblast-like cell responses of fluorine-substituted hydroxyapatite and zirconia dense composite. J Biomed Mater Res A, 72 (2005) 258-268.
    [95] S.K. Hsu, W.T. Huang, B.S. Liu, S.M. Li, H.T. Chen, C.J. Chang. Effects of near-field ultrasound stimulation on new bone formation and osseointegration of dental titanium implants in vitro and in vivo. Ultrasound Med Biol, 37 (2011) 403-416.
    [96] M. Lai, K. Cai, L. Zhao, X. Chen, Y. Hou, Z. Yang. Surface functionalization of TiO2 nanotubes with bone morphogenetic protein 2 and its synergistic effect on the differentiation of mesenchymal stem cells. Biomacromolecules, 12 (2011) 1097-1105.
    [97] N.G. Rim, S.J. Kim, Y.M. Shin, I. Jun, D.W. Lim, J.H. Park, H. Shin. Mussel-inspired surface modification of poly(l-lactide) electrospun fibers for modulation of osteogenic differentiation of human mesenchymal stem cells. Colloids Surf B Biointerfaces, 91 (2012) 189-197.
    [98] R. Narayanan, S.K. Seshadri, T.Y. Kwon, K.H. Kim. Calcium phosphate-based coatings on titanium and its alloys. J Biomed Mater Res B Appl Biomater, 85 (2008) 279-299.
    [99] M. Mu, X. Zhou, Q. Xiao, J. Liang, X. Huo. Preparation and tribological properties of self-lubricating TiO2/graphite composite coating on Ti6Al4V alloy. Appl Surf Sci, 258 (2012) 8570-8576.
    [100] Y.T. Sul, Y. Jeong, C. Johansson, T. Albrektsson. Oxidized, bioactive implants are rapidly and strongly integrated in bone. Part 1 – experimental implants. Clin Oral Implants Res, 17 (2006) 521-526.
    [101] K.C. Kung, T.M. Lee, J.L. Chen, T.S. Lui. Characteristics and biological responses of novel coatings containing strontium by micro-arc oxidation. Surf Coat Tech, 205 (2010) 1714-1722.
    [102] K.C. Kung, T.M. Lee, T.S. Lui. Bioactivity and corrosion properties of novel coatings containing strontium by micro-arc oxidation. J Alloys Compd, 508 (2010) 384-390.
    [103] K.C. Kung, K. Yuan, T.M. Lee, T.S. Lui. Effect of heat treatment on microstructures and mechanical behavior of porous Sr–Ca–P coatings on titanium. J Alloys Compd, 515 (2012) 68-73.
    [104] W.C. Wang, R.Y. Li, M. Tian, L. Liu, H. Zou, X.Y. Zhao, L.Q. Zhang. Surface silverized meta-aramid fibers prepared by bio-inspired poly(dopamine) functionalization. Acs Appl Mater Interfaces, 5 (2013) 2062-2069.
    [105] R.A. Zangmeister, T.A. Morris, M.J. Tarlov. Characterization of polydopamine thin films deposited at short times by autoxidation of dopamine. Langmuir, 29 (2013) 8619-8628.
    [106] J.H. Park, C.E. Wasilewski, N. Almodovar, R. Olivares-Navarrete, B.D. Boyan, R. Tannenbaum, Z. Schwartz. The responses to surface wettability gradients induced by chitosan nanofilms on microtextured titanium mediated by specific integrin receptors. Biomaterials, 33 (2012) 7386-7393.
    [107] Y.T. Liu, T.M. Lee, T.S. Lui. Enhanced osteoblastic cell response on zirconia by bio-inspired surface modification. Colloids Surf B Biointerfaces, 106 (2013) 37-45.
    [108] M. Ghibaudo, A. Saez, L. Trichet, A. Xayaphoummine, J. Browaeys, P. Silberzan, A. Buguin, B. Ladoux. Traction forces and rigidity sensing regulate cell functions. Soft Matter, 4 (2008) 1836-1843.
    [109] K. Anselme. Osteoblast adhesion on biomaterials. Biomaterials, 21 (2000) 667-681.
    [110] K. Anselme, M. Bigerelle, B. Noel, E. Dufresne, D. Judas, A. Iost, P. Hardouin. Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughnesses. J Biomed Mater Res, 49 (2000) 155-166.
    [111] K. Anselme, P. Linez, M. Bigerelle, D. Le Maguer, A. Le Maguer, P. Hardouin, H.F. Hildebrand, A. Iost, J.M. Leroy. The relative influence of the topography and chemistry of TiAl6V4 surfaces on osteoblastic cell behaviour. Biomaterials, 21 (2000) 1567-1577.
    [112] O. Guillame-Gentil, O. Semenov, A.S. Roca, T. Groth, R. Zahn, J. Vörös, M. Zenobi-Wong. Engineering the extracellular environment: strategies for building 2D and 3D cellular structures. Adv Mater, 22 (2010) 5443-5462.
    [113] W. Thein-Han, H.H.K. Xu. Collagen-calcium phosphate cement scaffolds seeded with umbilical cord stem cells for bone tissue engineering. Tissue Eng Part A, 17 (2011) 2943-2954.
    [114] C. Capuccini, P. Torricelli, F. Sima, E. Boanini, C. Ristoscu, B. Bracci, G. Socol, M. Fini, I.N. Mihailescu, A. Bigi. Strontium-substituted hydroxyapatite coatings synthesized by pulsed-laser deposition: in vitro osteoblast and osteoclast response. Acta Biomater, 4 (2008) 1885-1893.
    [115] W. Zechner, S. Tangl, G. Fürst, G. Tepper, U. Thams, G. Mailath, G. Watzek. Osseous healing characteristics of three different implant types. Clin Oral Implants Res, 14 (2003) 150-157.
    [116] A. Rocci, M. Martignoni, P.M. Burgos, J. Gottlow, L. Sennerby. Histology of retrieved immediately and early loaded oxidized implants: light microscopic observations after 5 to 9 months of loading in the posterior mandible. Clin Implant Dent Relat Res, 5 (2003) 88-98.
    [117] O.Z. Andersen, V. Offermanns, M. Sillassen, K.P. Almtoft, I.H. Andersen, S. Sørensen, C.S. Jeppesen, D.C.E. Kraft, J. Bøttiger, M. Rasse, F. Kloss, M. Foss. Accelerated bone ingrowth by local delivery of strontium from surface functionalized titanium implants. Biomaterials, 34 (2013) 5883-5890.
    [118] L. Maïmoun, T.C. Brennan, I. Badoud, V. Dubois-Ferriere, R. Rizzoli, P. Ammann. Strontium ranelate improves implant osseointegration. Bone, 46 (2010) 1436-1441.
    [119] J.P. Schreckenbach, G. Marx, F. Schlottig, M. Textor, N.D. Spencer. Characterization of anodic spark-converted titanium surfaces for biomedical applications. J Mater Sci Mater Med, 10 (1999) 453-457.
    [120] Y. Han, S.H. Hong, K. Xu. Structure and in vitro bioactivity of titania-based films by micro-arc oxidation. Surf Coat Tech, 168 (2003) 249-258.
    [121] D. Wei, Y. Zhou, Y. Wang, D. Jia. Characteristic of microarc oxidized coatings on titanium alloy formed in electrolytes containing chelate complex and nano-HA. Appl Surf Sci, 253 (2007) 5045-5050.
    [122] Y.T. Sul, C. Johansson, E. Byon, T. Albrektsson. The bone response of oxidized bioactive and non-bioactive titanium implants. Biomaterials, 26 (2005) 6720-6730.
    [123] F. Zhang, A. Weidmann, J.B. Nebe, U. Beck, E. Burkel. Preparation, microstructures, mechanical properties, and cytocompatibility of TiMn alloys for biomedical applications. J Biomed Mater Res B Appl Biomater, 94B (2010) 406-413.
    [124] G.S. Stein, J.B. Lian, A.J. van Wijnen, J.L. Stein, M. Montecino, A. Javed, S.K. Zaidi, D.W. Young, J.Y. Choi, S.M. Pockwinse. Runx2 control of organization, assembly and activity of the regulatory machinery for skeletal gene expression. Oncogene, 23 (2004) 4315-4329.
    [125] C.H. Lohmann, D.D. Dean, G. Köster, D. Casasola, G.H. Buchhorn, U. Fink, Z. Schwartz, B.D. Boyan. Ceramic and PMMA particles differentially affect osteoblast phenotype. Biomaterials, 23 (2002) 1855-1863.
    [126] Y.J. Bae, M.H. Kim. Manganese supplementation improves mineral density of the spine and femur and serum osteocalcin in rats. Biol Trace Elem Res, 124 (2008) 28-34.
    [127] G.D. Li, S.Y. Feng, D.L. Zhou. Magnetic bioactive glass ceramic in the system CaO-P2O5-SiO2-MgO-CaF2-MnO2-Fe2O3 for hyperthermia treatment of bone tumor. J Mater Sci Mater Med, 22 (2011) 2197-2206.
    [128] O. Dormond, L. Ponsonnet, M. Hasmim, A. Foletti, C. Ruegg. Manganese-induced integrin affinity maturation promotes recruitment of alpha V beta 3 integrin to focal adhesions in endothelial cells: evidence for a role of phosphatidylinositol 3-kinase and Src. Thromb Haemost, 92 (2004) 151-161.
    [129] D. Buser, S.F.M. Janner, J.-G. Wittneben, U. Brägger, C.A. Ramseier, G.E. Salvi. 10-year survival and success rates of 511 titanium implants with a sandblasted and acid-etched surface: a retrospective study in 303 partially edentulous patients. Clin Implant Dent Relat Res, 14 (2012) 839-851.
    [130] R.A. Gittens, R. Olivares-Navarrete, A. Cheng, D.M. Anderson, T. McLachlan, I. Stephan, J. Geis-Gerstorfer, K.H. Sandhage, A.G. Fedorov, F. Rupp, B.D. Boyan, R. Tannenbaum, Z. Schwartz. The roles of titanium surface micro/nanotopography and wettability on the differential response of human osteoblast lineage cells. Acta Biomater, 9 (2013) 6268-6277.
    [131] K. Kubo, N. Tsukimura, F. Iwasa, T. Ueno, L. Saruwatari, H. Aita, W.A. Chiou, T. Ogawa. Cellular behavior on TiO2 nanonodular structures in a micro-to-nanoscale hierarchy model. Biomaterials, 30 (2009) 5319-5329.
    [132] N.P. Lang, G.E. Salvi, G. Huynh-Ba, S. Ivanovski, N. Donos, D.D. Bosshardt. Early osseointegration to hydrophilic and hydrophobic implant surfaces in humans. Clin Oral Implants Res, 22 (2011) 349-356.
    [133] J.W. Park, K.B. Park, J.Y. Suh. Effects of calcium ion incorporation on bone healing of Ti6Al4V alloy implants in rabbit tibiae. Biomaterials, 28 (2007) 3306-3313.
    [134] A.L. Oliveira, R.L. Reis, P. Li. Strontium-substituted apatite coating grown on Ti6Al4V substrate through biomimetic synthesis. J Biomed Mater Res B Appl Biomater, 83 (2007) 258-265.

    下載圖示 校內:2024-12-31公開
    校外:2024-12-31公開
    QR CODE