| 研究生: |
李子瑋 Li, Zih-Wei |
|---|---|
| 論文名稱: |
CMOS毫米波功率放大器及94-GHz CMOS次諧波單混頻器射頻收發機之整合晶片設計研究 CMOS Millimeter-Wave Power Amplifier and 94-GHz CMOS Sub-Harmonic Single-Mixer RF Transceiver |
| 指導教授: |
莊惠如
Chuang, Huey-Ru |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 94-GHz 、CMOS 、毫米波 、功率放大器 、收發機 |
| 外文關鍵詞: | 94-GHz, CMOS, millimeter-wave (MMW), power amplifier (PA), transceiver |
| 相關次數: | 點閱:89 下載:12 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研製CMOS毫米波功率放大器及94-GHz CMOS次諧波單混頻器射頻收發機之整合晶片設計研究,採用TSMC 90-nm GUTM CMOS製程進行設計。使用增益提升技巧之94-GHz CMOS中功率放大器設計上採用串接四級共源極(common source, CS)的疊接(cascode)架構並搭配A類放大器之偏壓形式實現,同時藉由增益提升技巧(gain boosting)的方式使其具有較佳的線性度及功率增益來減輕其它發射機前端電路的設計負擔。使用縮小化3-dB正交耦合器之94-GHz CMOS功率放大器利用TSMC 90-nm GUTM CMOS製程之多層結構特色設計一縮小化耦合器做為功率結合/分波器,用來提升功率放大器之輸出功率以加強發射機系統訊號強度,同時也能改善傳統架構由於面積過大而不利於系統整合的缺點。94-GHz CMOS次諧波單混頻器射頻收發機整合晶片目標為設計一個94-GHz CMOS高增益功率放大器與敝實驗室其它同學設計之射頻收發開關、低雜訊放大器及混頻器進行整合。其發射端及接收端僅採用一個同時具有升頻與降頻功能之混頻器來做使用,中間以收發開關做切換,與傳統架構相比能省下一個混頻器及部份濾波器的使用,進而達到縮小晶片面積的功效,同時也能降低收發機之電路複雜度。電路設計以Agilent ADS與ANSYS 3-D全波電磁模擬軟體HFSS進行模擬,量測部份皆是採用on-wafer方式進行,根據欲量測參數特性之不同,相關量測架設方式亦有所調整。
This thesis presents the research on CMOS millimeter-wave (MMW) medium power amplifiers (PAs) and a 94-GHz CMOS sub-harmonic single-mixer RF transceiver (TRx), implemented by standard TSMC 90-nm GUTM CMOS process. In the 94-GHz CMOS medium power amplifier (MPA) design, a four stage class-A common-source (CS) cascode structure with gain-boosting technique is adopted for linearity and power gain enhancement. In the 94-GHz CMOS balanced PA design, a compact 3-dB miniaturized quadrature coupler is employed as a low-insertion-loss power splitter/combiner to improve the output power and provide an area-efficient solution for balance PA design. In the 94-GHz CMOS single-mixer TRx, a high-gain PA is designed for integrating with T/R switches, a low-noise amplifier (LNA), and a sub-harmonic single up/down conversion mixer. The CMOS TRx uses only one up/down conversion mixer and T/R switches to change the modes between transmitting (Tx) and receiving (Rx) path. Compared with the traditional TRx architecture, it can reduce the chip size without the use of additional mixer and filters, and also simplify the complexity of TRx design. The measured performances of the designed MMW CMOS RFICs are all performed by using the on-wafer measurement. Simulation and measurement results are compared and discussed.
[1] J. A. Howarth, A. P. Lauterbach, M. L. J. Boers, L. M. Davis, A. Parker, J. Harrison, J. Rathmell, M. Batty, W. Cowley, C. Burnet, L. Hall, D. Abbott, and N. Weste, “60 GHz radios: enabling next-generation wireless applications,” in Proc. TENCON 2005 region 10, Nov. 2005, pp. 1–6.
[2] RF atmospheric absorption / ducting [Online]. Available: http://www.tscm.com/rf_absor.pdf
[3] IEEE 802.15 Working Group for WPAN. [Online]. Available: http://www.ieee802.org/15
[4] S. Davis, B. Van Veen, S. Hagness, and F. Kelcz, “Breast tumor characterization based on ultrawideband microwave backscatter,” IEEE Trans. Biomed. Eng., vol. 55, no.1, pp. 237–246, Jan. 2008.
[5] A. Arbabian, S. Callender, S. Kang, B. Afshar, J.-C. Chien, and A. Niknejad, “A 90 GHz hybrid switching pulsed-transmitter for medical imaging,” IEEE J. Solid-State Circuits, vol. 45, no.12, pp. 2667–2681, Dec. 2010.
[6] S.-J. Huang, Y.-C. Yeh, H. Wang, P.-N. Chen, and J. Lee, “W-band BPSK and QPSK trnsceivers with costas-loop carrier recovery in 65-nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 46, no. 12, pp. 3033–3046, Dec. 2011.
[7] E. Laskin, M. Khanpour, S. T. Nicolson, A. Tomkins, P. Garcia, A. Cathelin, D. Belot, and S. P. Voinigescu,“Nanoscale CMOS transceiver design in the 90–170 GHz range,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 12, pp. 3477–3490, Dec. 2009.
[8] B. P. Ginsburg, S. M. Ramaswamy, V. Rentala, E. Seok, S. Sankaran, and B. Haroun, “A 160 GHz pulsed radar transceiver in 65 nm CMOS,” IEEE J. Solid-State Circuits, vol.49, no.4, pp. 984–995, Apr. 2014.
[9] J. N. Mait, D. A. Wikner, M. S. Mirotznik, J. van der Gracht, G. P. Behrmann, B. L. Good, and S. A. Mathews, “94-GHz imager with extended depth of field,” IEEE Transactions on Antennas and Porpagation, vol. 57 no. 6, pp. 1713–1719, jun. 2009.
[10] A. Arbabian, S. Callender, S. Kang, M. Rangwala, and A. M. Niknejad, “A 94 GHz mm-wave to baseband pulsed-radar transceiver with applications in imaging and gesture recognition,” IEEE J. Solid-State Circuits, vol. 48, no. 4, pp. 1055–1071, Apr. 2013.
[11] P.-J. Peng, P.-N. Chen, Y.-L. Chen, and J. Lee, “A 94 GHz 3D image radar engine with 4TX/4RX beamforming scan technique in 65 nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 50, no. 3, pp. 656–668, Mar. 2015.
[12] Steve C. Cripps, RF Power Amplifiers for Wireless Communications, 2nd ed., Artech House, 2006.
[13] 張盛富,張嘉展,無線通訊射頻晶片模組設計-射頻晶片篇,全華科技,2008。
[14] B. Razavi, RF Microelectronics, 2nd ed., Prentice Hall, Inc., 1998.
[15] Peter B. Kennington, High-Linearity RF Amplifier Design, Artech House 2000.
[16] 廖哲宏,應用於IEEE 802.11a WLAN之5.7 GHz CMOS射頻接收機及功率放大器RFICs,成功大學電腦與通信工程研究所碩士論文,民國九十二年。
[17] D. M. Pozar, Microwave Engineering, 3rd ed., John Wiley and Sons, Inc., 2005.
[18] G. Gonzalez, Microwave Transistor Amplifiers, 2nd ed., Prentice Hall, Inc., 1997.
[19] A. Komijani, A. Natarajan, and A. Hajimiri, “A 24-GHz, +14.5-dBm fully integrated power amplifier in 0.18-μm CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 9, pp. 1901–1908, Sep. 2005.
[20] H.-H. Hsieh and L.-H. Lu, “A 40-GHz low-noise amplifier with a positive-feedback network in 0.18-μm CMOS,” IEEE Trans. Microw. Theory Tech., vol. 57, no.8, pp.1895–1902, Aug. 2009.
[21] Y. S. Jiang, Z. M. Tsai, J. H. Tsai, H. T. Chen, and H. Wang, “A 86-to-108 GHz amplifier in 90nm CMOS”, IEEE Microw. Wireless Compon. Lett., vol. 18, no. 2, pp. 124–126, Feb. 2008.
[22] N. Deferm, J. OSorio, A. de Graauw, and P. Reynaert, “A 94GHz differential power amplifier in 45nm LP CMOS”, IEEE Radio Frequency Integrated Circuits (RFIC) Symp., Jun. 2011, pp. 1–4.
[23] C.-Y. Law, and A.-V. Pham, “A high-gain 60-GHz power amplifier with 20-dBm output power in 90-nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., pp. 426–427, Feb. 2010.
[24] 林育聖,60-GHz與26-/77-GHz雙頻帶CMOS被動元件及主動濾波器之研製,成功大學電腦與通信工程研究所碩士論文,民國九十八年。
[25] J.-H. Tsai, Y.-L. Lee, T.-W. Huang, C.-M. Yu, and John G. J. Chern, “A 90-nm CMOS broadband and miniature Q-band balanced medium power amplifier,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2007, pp. 1129–1132.
[26] Y.-S. Jiang, J.-H. Tsai, and H. Wang, “A W-band medium power amplifier in 90 nm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 12, pp. 818–820, Dec. 2008.
[27] 呂知穎,毫米波CMOS低變化插入損耗相移器與非對稱型射頻收發開關之研製,成功大學電腦與通信工程研究所碩士論文,民國一百零一年。
[28] I. Aoki, S. D. Kee, D. B. Rutledge, and A. Hajimiri, “Fully integrated CMOS power amplifier design using the distributed active-transformer architecture,” IEEE J. Solid-State Circuits, vol. 37, no. 3, pp. 371–383, Mar. 2002.
[29] J. R. Long, “Monolithic transformer for silicon RF IC design,” IEEE J. Solid-State Circuits, vol. 35, no. 9, pp. 1368–1382, Sep. 2000.
[30] T.-Y. Chin, J.-C. Wu, S.-F. Chang, and C.-C. Chang, “Compact S-/Ka-band CMOS quadrature hybrids with high phase balance based on multilayer transformer over-coupling technique,” IEEE Trans. Microw. Theory Techn., vol. 57, no. 3, pp. 708–715, Mar. 2009.
[31] M. Khanpour, K. W. Tang, P. Garcia, and S. P. Voinigescu, “A wideband W-band receiver front-end in 65 nm CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 8, pp. 1717–1730, Aug. 2008.
[32] E. Laskin, M. Khanpour, R. Aroca, K. W. Tang, P. Garcia, and S. P. Voinigescu, “A 95 GHz receiver with fundamental-frequency VCO and static frequency divider in 65 nm digital CMOS,” in Proc. IEEE ISSCC Dig., Feb. 2008, pp. 180–181.
[33] H.-Y. Su, R. Hu, and C.-Y. Wu, “A 78–102 GHz front-end receiver in 90 nm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 9, pp. 489–491, Sep. 2011.
[34] 郭奇昕,毫米波CMOS高隔離度射頻收發開關及功率放大器研製,國立成功大學電腦與通信工程研究所碩士論文,民國一零一年。
[35] N. O. Sokal and A. D. Sokal, “Class E-A new class of high-efficiency tuned single-ended switching power amplifiers,” IEEE J. Solid-State Circuits, vol. 10, no. 3, pp. 168–176, Jun. 1975.