簡易檢索 / 詳目顯示

研究生: 蘇延善
To, Dien Thien
論文名稱: 銅基和鐵基氫化觸媒於二氧化碳氫化生產高附加價值化學品
Production of value-added chemicals by hydrogenation of carbon dioxide using copper- and iron-based catalysts
指導教授: 林裕川
Lin, Yu-Chuan
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 72
外文關鍵詞: CO2 hydrogenation, copper phyllosilicate, iron carbides
相關次數: 點閱:68下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 使用銅基和鐵基催化劑,將二氧化碳分別轉化為CO,甲醇,或低碳鍊烯烴,證明利用可再生碳源生成加值化學品的潛力。本研究,提出不同催化劑以提高各相對應的反應催化性能。
    本研究使用胺基官能化銅鋅層狀矽酸鹽(Cu/Zn/SiO2-NH2)可獲得高選擇性的反向水煤氣變換反應(RWGS)。將 Cu/Zn/SiO2-NH2 與Cu/SiO2-NH2 和商業化銅鋅鋁催化劑 (CuZnAl2O3) 比較,Cu/Zn/SiO2-NH2不僅可以提高二氧化碳的轉化率,而且與未接枝的催化劑相比,還可以促進 RWGS 的選擇性(>99%)生成一氧化碳。通過二氧化碳程序升溫脫附 (CO2-TPD) 與紅外線吸收光譜 (DRIFTS) 分析結果表明,氨基官能化的銅基催化劑對二氧化碳有很強的化學吸附,這是由表面胺基與二氧化碳形成胺基甲酸酯所引起的。
    以碳-氮 (CN) 前驅物列如三聚氰胺、g-C3N4 (b-C3N4)與缺陷的g-C3N4 (d-C3N4)和硝酸鐵混合後通過共熱解法來合成Fe-CN-Py催化劑。在Fe-CN-Py催化劑中,Fe-d-C3N4-(0.3)-Py表現出最高的CO2轉化率(47.2%)、烯烴產率(10.8%)和烯烴空時產率 (STY, 4.5 微莫耳烯烴 秒-1 克鐡-1)。Fe-d-C3N4-(0.3)-Py的良好活性可歸功於其高度分散的碳化鐵,這是由d-C3N4的高非晶性和缺陷碳所引起的。Fe3+和d-C3N4之間的強交互作用抑制了團聚。另外本研究也建立了碳化鐵與烴類和烯烴的STY間的關聯性。

    Utilization and conversion of carbon dioxides to CO, methanol, or light olefins by using copper- and iron-based catalysts demonstrated a potential way to suppress carbon emission and product value-added chemicals from renewable carbon sources. In this study, tailoring catalysts to improve the catalytic performance of each respective reactions was proposed.
    Herein, a highly selective reverse water-gas shift (RWGS) can be obtained by using amino-functionalized Cu/Zn/SiO2 derived from zinc containing copper phyllosilicate (Cu/Zn/SiO2-NH2) was reported. Cu/Zn/SiO2-NH2 was compared with amino-functionalized Cu catalysts including copper phyllosilicate (Cu/SiO2-NH2) and copper/zinc supported on alumina (CuZnAl2O3). Cu/Zn/SiO2-NH2, not only can enhance the conversion of CO2, but also promote RWGS to yield CO with a high selectivity (>99%) comparing to their un-grafted counterparts. The role of the amino groups on the activity of amino-functionalized Cu-based catalysts was disclosed by various physicochemical characterization methods. The CO2-TPD and DRIFTS results showed a strong adsorption of CO2 on the amino-functionalized Cu-based catalysts caused by the formation of carbamate species.
    The mixture of carbon-nitrogen (CN) precursors such as melamine, bulky g-C3N4 (b-C3N4), or defective g-C3N4 (d-C3N4) and iron nitrate were used to synthesize Fe-CN-Py catalysts through the co-pyrolysis method. Among the Fe-CN-Py catalysts, Fe-d-C3N4-(0.3)-Py showed the highest CO2 conversion (47.2%), olefin yield (10.8%) and olefin space-time yield (STY, 4.5 μmol olefin s1 gFe1). The promising activity of Fe-d-C3N4-(0.3)-Py was attributed to its highly dispersed iron carbide, induced by the high amorphization degree and defective carbon of d-C3N4. The strong interaction between Fe3+ and d-C3N4 suppressed the extent of agglomeration. The correlation between iron carbides and the STY of hydrocarbons and olefins was established.

    Table of Contents Abstract i 摘要 ii Acknowledgement iii Table of contents iv List of Tables vi List of Figures vii List of Abbreviations ix Chapter 1 Introduction 1 Chapter 2 Synthesis of alcohols from hydrogenation of carbonates, carboxylic acids, carboxylates, formyls, and CO2 using copper phyllosilicates-derived catalysts: A review 2 2.1 Introduction 2 2.2 Formation of CuPS-cats 4 2.2.1 Synthesis methods 4 2.2.2 Effect of synthesis criteria 7 2.2.3 Effect of Supports 9 2.2.4 Promoter effects 11 2.2.5 CuPS nanotubes 11 2.3 Hydrogenation Activity of CuPS-Cats 17 2.3.1 Esters to alcohols 17 2.3.2 EC to MeOH and EG 19 2.3.3 Carboxylic Acid to Alcohol 19 2.3.4 Aldehyde to Alcohol 20 2.3.5 CO2 Hydrogenation to MeOH 21 2.4 Deactivation 21 2.4.1 Causes of deactivation 21 2.4.2 Remedial Actions 21 2.5 Prospective and challenges 22 Chapter 3 An investigation of the alkyl- and amino-functionalized CuZnPS for methanol synthesis from CO2 hydrogenation 23 3.1 Introduction 23 3.2 Experimental 24 3.2.1 Catalyst synthesis 24 3.2.2 Characterization 24 3.2.3 Activity evaluation 25 3.3 Result and discussion 25 3.3.1 Surface modification of CuPS, CuZnPS 25 3.3.2 Catalytic activity evaluation. 26 3.4 Conclusion 28 Chapter 4 Catalytic conversion of CO2 to light hydrocarbons by using iron carbides derived from iron nitrate co-pyrolyzing with melamine, g-C3N4, and defective g-C3N4 30 4.1 Introduction 30 4.2 Experimental 31 4.2.1 Synthesis of b-C3N4 and d-C3N4 31 4.2.2 Preparation of Fe-CN-Py catalysts 32 4.2.3 Characterization 32 4.2.4 Catalytic activity of Fe-CN-Py catalysts 33 4.3 Results and discussion 33 4.3.1 Synthesis of b-C3N4 and d-C3N4 33 4.3.2 Preparation of Fe-CN catalysts 34 4.3.3 CO2 hydrogenation performance 39 4.3.4 Post-reaction Fe-CN-(0.3)-Py catalysts 40 4.3.5 Structure-activity correlation 41 4.4 Conclusion 42 Support information 43 Chapter 5 Conclusion and recommendation 54 References 55 Appendices 70 Appendix 1. CV 70 Appendix 2. Publications 72

    1. Yang, Z., Qi, Y., Wang, F., Han, Z., Jiang, Y., Han, H., Liu, J., Zhang, X., and Ong, W.J., State-of-the-art advancements in photo-assisted CO2 hydrogenation: recent progress in catalyst development and reaction mechanisms. Journal of Materials Chemistry A, 2020. 8(47): p. 24868-24894.
    2. Albero, J., Peng, Y., and García, H., Photocatalytic CO2 reduction to C2+ products. ACS Catalysis, 2020. 10(10): p. 5734-5749.
    3. Hasan, M.M.F., Rossi, L.M., Debecker, D.P., Leonard, K.C., Li, Z., Makhubela, B.C.E., Zhao, C., and Kleij, A., Can CO2 and renewable carbon be primary resources for sustainable fuels and chemicals? ACS Sustainable Chemistry & Engineering, 2021. 9(37): p. 12427-12430.
    4. Alkhatib, I.I., Garlisi, C., Pagliaro, M., Al-Ali, K., and Palmisano, G., Metal-organic frameworks for photocatalytic CO2 reduction under visible radiation: A review of strategies and applications. Catalysis Today, 2020. 340: p. 209-224.
    5. Whittig, L., Hydroxy Interlayers - Their Formation and Influence on Phyllosilicate Properties. Abstracts of Papers of The American Chemical Society 1986. 192: p. 68-IAEC
    6. Weiss, Z., Rieder, M., and Chmielova, M., Deformation of Coordination Polyhedra and Their Sheets in Phyllosilicates. European Journal of Mineralogy, 1992. 4(4): p. 665-682.
    7. Mizutani, T., Fukushima, Y., Okada, A., Kamigaito, O., and Kobayashi, T., Synthesis of 1:1 And 2:1 Iron Phyllosilicates and Characterization of Their Iron State by Mössbauer Spectroscopy. Clays and Clay Minerals, 1991. 39(4): p. 381-386.
    8. Mosser, C., Mosser, A., Romeo, M., Petit, S., and Decarreau, A., Natural and Synthetic Copper Phyllosilicates Studied by XPS. Clays and Clay Minerals, 1992. 40(5): p. 593-599.
    9. Dejong, B., Slaats, P., Super, H., Veldman, N., and Spek, A., Extended Structures in Crystalline Phyllosilicates - Silica Ring-Systems in Lithium, Rubidium, Cesium, and Cesium/Lithium Phyllosilicate. Journal of Non-Crystalline Solids, 1994. 176(2-3): p. 164-171.
    10. Veldman, N., Spek, A.L., Super, H.T.J., and de Jong, B.H.W.S., Caesium-Lithium Phyllosilicate, Cs1.33Li0.67Si2O5. Acta Crystallographica Section C, 1995. 51(10): p. 1972-1975.
    11. Fukushima, Y. and Tani, M., An organic/inorganic hybrid layered polymer: methacrylate–magnesium(nickel) phyllosilicate. Journal of the Chemical Society, Chemical Communications, 1995(2): p. 241-242.
    12. Jaber, M. and Miehe-Brendle, J., Synthesis, characterization and applications of 2:1 phyllosilicates and organophyllosilicates: Contribution of fluoride to study the octahedral sheet. Microporous and Mesoporous Materials, 2008. 107(1-2): p. 121-127.
    13. McDonald, A., Scott, B., and Villemure, G., Hydrothermal preparation of nanotubular particles of a 1:1 nickel phyllosilicate. Microporous and Mesoporous Materials, 2009. 120(3): p. 263-266.
    14. Fan, Q., Li, P., and Pan, D., Chapter 1 - Radionuclides sorption on typical clay minerals: Modeling and spectroscopies, in Interface Science and Technology, Chen, C., Editor. 2019, Elsevier. p. 1-38.
    15. Onnainty, R. and Granero, G., Chapter 14 - Chitosan-based nanocomposites: Promising materials for drug delivery applications, in Biomedical Applications of Nanoparticles, Grumezescu, A.M., Editor. 2019, William Andrew Publishing: Newyork, USA. p. 375-407.
    16. Toupance, T., Kermarec, M., Lambert, J.-F., and Louis, C., Conditions of formation of copper phyllosilicates in silica-supported copper catalysts prepared by selective adsorption. The Journal of Physical Chemistry B, 2002. 106(9): p. 2277-2286.
    17. Perez-Maqueda, L.A., Franco, F., and Perez-Rodriguez, J.L., Comparative study of the sonication effect on the thermal behaviour of 1:1 and 2:1 aluminium phyllosilicate clays. Journal of the European Ceramic Society, 2005. 25(9): p. 1463-1470.
    18. van den Berg, R., Elkjaer, C.F., Gommes, C.J., Chorkendorff, I., Sehested, J., de Jongh, P.E., de Jong, K.P., and Helveg, S., Revealing the formation of copper nanoparticles from a homogeneous solid precursor by electron microscopy. Journal of the American Chemical Society, 2016. 138(10): p. 3433-3442.
    19. Hsu, A.F., Jones, K., and Foglia, T.A., Phyllosilicate sol-gel immobilized lipases for the formation of partial acylglycerides. Biotechnology Letters, 2002. 24(14): p. 1161-1165.
    20. Chabrol, K., Gressier, M., Pebere, N., Menu, M.-J., Martin, F., Bonino, J.-P., Marichal, C., and Brendle, J., Functionalization of synthetic talc-like phyllosilicates by alkoxyorganosilane grafting. Journal of Materials Chemistry, 2010. 20(43): p. 9695-9706.
    21. Kim, S.Y. and Choi, Y.-S., Preparation of magnesium-based two-dimensional phyllosilicate materials and simultaneous antioxidant drug intercalation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019. 569: p. 164-170.
    22. Richard-Plouet, M. and Vilminot, S., Ferromagnetism in talc-like cobalt-phyllosilicates. Solid State Sciences, 1999. 1(6): p. 381-393.
    23. Richard-Plouet, M., Vilminot, S., Guillot, M., and Kurmoo, M., Canted antiferromagnetism in an organo-modified layered nickel phyllosilicate. Chemistry of Materials, 2002. 14(9): p. 3829-3836.
    24. Zhang, X.-Q., Li, W.-C., He, B., Yan, D., Xu, S., Cao, Y., and Lu, A.-H., Ultrathin phyllosilicate nanosheets as anode materials with superior rate performance for lithium ion batteries. Journal of Materials Chemistry A, 2018. 6(4): p. 1397-1402.
    25. Razmjou, A., Eshaghi, G., Orooji, Y., Hosseini, E., Korayem, A.H., Mohagheghian, F., Boroumand, Y., Noorbakhsh, A., Asadnia, M., and Chen, V., Lithium ion-selective membrane with 2D subnanometer channels. Water Res, 2019. 159: p. 313-323.
    26. Kim, Y.-W., Kim, J.-H., Moon, D.H., and Shin, H.-J., Adsorption and precipitation of anionic dye Reactive Red 120 from aqueous solution by aminopropyl functionalized magnesium phyllosilicate. Korean Journal of Chemical Engineering, 2019. 36(1): p. 101-108.
    27. Sarr, A.B., Mayura, K., Kubena, L.F., Harvey, R.B., and Phillips, T.D., Effects of phyllosilicate clay on the metabolic profile of aflatoxin B1 in Fischer-344 rats. Toxicology Letters, 1995. 75(1): p. 145-151.
    28. Han, H.-K., Lee, Y.-C., Lee, M.-Y., Patil, A.J., and Shin, H.-J., Magnesium and calcium organophyllosilicates: synthesis and in vitro cytotoxicity study. ACS Applied Materials & Interfaces, 2011. 3(7): p. 2564-2572.
    29. Lagadic, I.L., Mitchell, M.K., and Payne, B.D., Highly effective adsorption of heavy metal tons by a thiol-functionalized magnesium phyllosilicate clay. Environmental Science & Technology, 2001. 35(5): p. 984-990.
    30. Melo, M.A., Pires, C.T.G.V.M.T., and Airoldi, C., The influence of the leaving iodine atom on phyllosilicate syntheses and useful application in toxic metal removal with favorable energetic effects. RSC Advances, 2014. 4(77): p. 41028-41038.
    31. Moura, K.O. and Pastore, H.O., Comparative adsorption of CO2 by mono-, di-, and triamino-organofunctionalized magnesium phyllosilicates. Environ Sci Technol, 2013. 47(21): p. 12201-10.
    32. Song, D., Lee, Y.-C., Park, S.B., and Han, J.-I., CO2 capturing and mineralization by (Mg)-phyllosilicate coated with fabrics. Journal of Nanoscience and Nanotechnology, 2016. 16(5): p. 5063-5069.
    33. Li, Z., Kathiraser, Y., and Kawi, S., Facile synthesis of high surface area yolk-shell Ni@Ni embedded SiO2 via Ni phyllosilicate with enhanced performance for CO2 reforming of CH4. ChemCatChem, 2015. 7(1): p. 160-168.
    34. Ye, R.-P., Gong, W., Sun, Z., Sheng, Q., Shi, X., Wang, T., Yao, Y., Razink, J.J., Lin, L., Zhou, Z., Adidharma, H., Tang, J., Fan, M., and Yao, Y.-G., Enhanced stability of Ni/SiO2 catalyst for CO2 methanation: Derived from nickel phyllosilicate with strong metal-support interactions. Energy, 2019. 188: p. 116059.
    35. Wang, Z.-Q., Xu, Z.-N., Zhang, M.-J., Chen, Q.-S., Chen, Y., and Guo, G.-C., Insight into composition evolution in the synthesis of high-performance Cu/SiO2 catalysts for CO2 hydrogenation. RSC Advances, 2016. 6(30): p. 25185-25190.
    36. Richard, A.R. and Fan, M., Low-pressure hydrogenation of CO2 to CH3OH using Ni-In-Al/SiO2 catalyst synthesized via a phyllosilicate precursor. ACS Catalysis, 2017. 7(9): p. 5679-5692.
    37. Loaiza-Gil, A., Arenas, J., Villarroel, M., Imbert, F., del Castillo, H., and Fontal, B., Heavier alcohols synthesis on cobalt phyllosilicate catalysts. J. Mol. Catal. A: Chem., 2005. 228(1-2): p. 339-344.
    38. Feyzi, M., Nadri, S., and Joshaghani, M., Catalytic performance of Fe-Mn/SiO2 nanocatalysts for CO hydrogenation. Journal of Chemistry, 2013.
    39. Zhang, F., Li, Y., Gao, S., Fang, H., Liang, X., and Yuan, Y., Synthesis of higher alcohols by CO hydrogenation on a K-promoted Ni–Mo catalyst derived from Ni–Mo phyllosilicate. Catalysis Science & Technology, 2018. 8(16): p. 4219-4228.
    40. Park, J.C., Kang, S.W., Kim, J.-C., Kwon, J.I., Jang, S., Rhim, G.B., Kim, M., Chun, D.H., Lee, H.-T., Jung, H., Song, H., and Yang, J.-I., Synthesis of Co/SiO2 hybrid nanocatalyst via twisted Co3Si2O5(OH)4 nanosheets for high-temperature Fischer–Tropsch reaction. Nano Res., 2017. 10(3): p. 1044-1055.
    41. Nam, B., Lee, H.U., Park, S.Y., Son, B.-C., Lee, G.-W., Park, J.-Y., and Lee, Y.-C., Dual-end-functionalized tin (Sn)-phyllosilicates for the esterification of oleic acid. Journal of Industrial and Engineering Chemistry, 2016. 41: p. 50-61.
    42. Kim, J.S., Park, I., Jeong, E.-S., Jin, K., Seong, W.M., Yoon, G., Kim, H., Kim, B., Nam, K.T., and Kang, K., Amorphous cobalt phyllosilicate with layered crystalline motifs as water oxidation catalyst. Adv. Mater. , 2017. 29(21): p. 1606893.
    43. Kim, B., Kim, J.S., Kim, H., Park, I., Seong, W.M., and Kang, K., Amorphous multinary phyllosilicate catalysts for electrochemical water oxidation. Journal of Materials Chemistry A, 2019. 7(31): p. 18380-18387.
    44. Zhao, Y., Zhang, Y., Wang, Y., Zhang, J., Xu, Y., Wang, S., and Ma, X., Structure evolution of mesoporous silica supported copper catalyst for dimethyl oxalate hydrogenation. Applied Catalysis A: General, 2017. 539: p. 59-69.
    45. Qi, W., Ling, Q., Ding, D., Yazhong, C., Chengwu, S., Peng, C., Ye, W., Qinghong, Z., Rong, L., and Hao, S., Performance enhancement of Cu/SiO2 catalyst for hydrogenation of dimethyl oxalate to ethylene glycol through zinc incorporation. Catalysis Communications, 2018. 108: p. 68-72.
    46. Kang, H.G., Lee, K.M., Choi, S., Nam, B., Choi, S.A., Lee, S.C., Park, J.Y., Lee, G.W., Lee, H.U., and Lee, Y.C., Feasibility tests of -SO3H/-SO3--functionalized magnesium phyllosilicate [-SO3H/-SO3- MP] for environmental and bioenergy applications. RSC Advances, 2015. 5(78): p. 63271-63277.
    47. Shang, H., Zhang, X., Xu, J., and Han, Y., Effects of preparation methods on the activity of CuO/CeO2 catalysts for CO oxidation. Frontiers of Chemical Science and Engineering, 2017. 11(4): p. 603-612.
    48. Wei, B., Yang, N., Pang, F., and Ge, J., Cu2O–CuO hollow nanospheres as a heterogeneous catalyst for synergetic oxidation of CO. The Journal of Physical Chemistry C, 2018. 122(34): p. 19524-19531.
    49. Sarafraz, M.M., Safaei, M.R., Goodarzi, M., and Arjomandi, M., Reforming of methanol with steam in a micro-reactor with Cu–SiO2 porous catalyst. International Journal of Hydrogen Energy, 2019. 44(36): p. 19628-19639.
    50. Kim, W., Mohaideen, K.K., Seo, D.J., and Yoon, W.L., Methanol-steam reforming reaction over Cu-Al-based catalysts derived from layered double hydroxides. International Journal of Hydrogen Energy, 2017. 42(4): p. 2081-2087.
    51. Gong, X., Wang, M., Fang, H., Qian, X., Ye, L., Duan, X., and Yuan, Y., Copper nanoparticles socketed in situ into copper phyllosilicate nanotubes with enhanced performance for chemoselective hydrogenation of esters. Chemical Communications, 2017. 53(51): p. 6933-6936.
    52. Jiang, J.W., Tu, C.C., Chen, C.H., and Lin, Y.C., Highly selective silica‐supported copper catalysts derived from copper phyllosilicates in the hydrogenation of adipic acid to 1,6‐hexanediol. ChemCatChem, 2018. 10(23): p. 5449-5458.
    53. Yu, X., Vest, T.A., Gleason-Boure, N., Karakalos, S.G., Tate, G.L., Burkholder, M., Monnier, J.R., and Williams, C.T., Enhanced hydrogenation of dimethyl oxalate to ethylene glycol over indium promoted Cu/SiO2. Journal of Catalysis, 2019. 380: p. 289-296.
    54. Bian, Z. and Kawi, S., Sandwich-like silica@Ni@silica multicore–shell catalyst for the low-temperature dry reforming of methane: confinement effect against carbon formation. ChemCatChem, 2018. 10(1): p. 320-328.
    55. Shi, D.C., Yang, Q.F., Peterson, C., Lamic-Humblot, A.F., Girardon, J.S., Griboval-Constant, A., Stievano, L., Sougrati, M.T., Briois, V., Bagot, P.A.J., Wojcieszak, R., Paul, S., and Marceau, E., Bimetallic Fe-Ni/SiO2 catalysts for furfural hydrogenation: Identification of the interplay between Fe and Ni during deposition-precipitation and thermal treatments. Catalysis Today, 2019. 334: p. 162-172.
    56. Watari, R. and Kayaki, Y., Copper catalysts unleashing the potential for hydrogenation of carbon−oxygen bonds. Asian Journal of Organic Chemistry, 2018. 7(10): p. 2005-2014.
    57. Ye, R.-P., Lin, L., Li, Q., Zhou, Z., Wang, T., Russell, C.K., Adidharma, H., Xu, Z., Yao, Y.-G., and Fan, M., Recent progress in improving the stability of copper-based catalysts for hydrogenation of carbon–oxygen bonds. Catalysis Science & Technology, 2018. 8(14): p. 3428-3449.
    58. Bian, Z. and Kawi, S., Preparation, characterization and catalytic application of phyllosilicate: A review. Catal. Today, 2020. 339: p. 3-23.
    59. Toupance, T., Kermarec, M., and Louis, C., Metal particle size in silica-supported copper catalysts. Influence of the conditions of preparation and of thermal pretreatments. The Journal of Physical Chemistry B, 2000. 104(5): p. 965-972.
    60. Chen, L., Guo, P., Qiao, M., Yan, S., Li, H., Shen, W., Xu, H., and Fan, K., Cu/SiO2 catalysts prepared by the ammonia-evaporation method: Texture, structure, and catalytic performance in hydrogenation of dimethyl oxalate to ethylene glycol. Journal of Catalysis, 2008. 257(1): p. 172-180.
    61. Gong, J., Yue, H., Zhao, Y., Zhao, S., Zhao, L., Lv, J., Wang, S., and Ma, X., Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0–Cu+ sites. Journal of the American Chemical Society, 2012. 134(34): p. 13922-13925.
    62. Yue, H., Zhao, Y., Zhao, S., Wang, B., Ma, X., and Gong, J., A copper-phyllosilicate core-sheath nanoreactor for carbon–oxygen hydrogenolysis reactions. Nature Communications, 2013. 4: p. 2339.
    63. Xu, C., Chen, G., Zhao, Y., Liu, P., Duan, X., Gu, L., Fu, G., Yuan, Y., and Zheng, N., Interfacing with silica boosts the catalysis of copper. Nature Communications, 2018. 9(1): p. 3367.
    64. Yao, D., Wang, Y., Li, Y., Zhao, Y., Lv, J., and Ma, X., A high-performance nanoreactor for carbon–oxygen bond hydrogenation reactions achieved by the morphology of nanotube-assembled hollow spheres. ACS Catalysis, 2018. 8(2): p. 1218-1226.
    65. Popa, T., Zhang, Y., Jin, E., and Fan, M., An environmentally benign and low-cost approach to synthesis of thermally stable industrial catalyst Cu/SiO2 for the hydrogenation of dimethyl oxalate to ethylene glycol. Applied Catalysis A: General, 2015. 505: p. 52-61.
    66. Ding, J., Popa, T., Tang, J., Gasem, K.A.M., Fan, M., and Zhong, Q., Highly selective and stable Cu/SiO2 catalysts prepared with a green method for hydrogenation of diethyl oxalate into ethylene glycol. Applied Catalysis B: Environmental, 2017. 209: p. 530-542.
    67. Dong, F., Ding, G., Zheng, H., Xiang, X., Chen, L., Zhu, Y., and Li, Y., Highly dispersed Cu nanoparticles as an efficient catalyst for the synthesis of the biofuel 2-methylfuran. Catalysis Science & Technology, 2016. 6(3): p. 767-779.
    68. Li, H., Ban, L., Wang, Z., Meng, P., Zhang, Y., Wu, R., and Zhao, Y., Regulation of Cu species in CuO/SiO2 and its structural evolution in ethynylation reaction. Nanomaterials (Basel), 2019. 9(6).
    69. Zhu, J., Ye, Y., Tang, Y., Chen, L., and Tang, K., Efficient hydrogenation of dimethyl oxalate to ethylene glycol via nickel stabilized copper catalysts. RSC Advances, 2016. 6(112): p. 111415-111420.
    70. Dong, X., Ma, X., Xu, H., and Ge, Q., Comparative study of silica-supported copper catalysts prepared by different methods: formation and transition of copper phyllosilicate. Catalysis Science & Technology, 2016. 6(12): p. 4151-4158.
    71. Zhao, Y., Li, S., Wang, Y., Shan, B., Zhang, J., Wang, S., and Ma, X., Efficient tuning of surface copper species of Cu/SiO2 catalyst for hydrogenation of dimethyl oxalate to ethylene glycol. Chemical Engineering Journal, 2017. 313: p. 759-768.
    72. Zhao, Y., Shan, B., Wang, Y., Zhou, J., Wang, S., and Ma, X., An effective CuZn–SiO2 bimetallic catalyst prepared by hydrolysis precipitation method for the hydrogenation of methyl acetate to ethanol. Industrial & Engineering Chemistry Research, 2018. 57(13): p. 4526-4534.
    73. Zhang, B., Hui, S., Zhang, S., Ji, Y., Li, W., and Fang, D., Effect of copper loading on texture, structure and catalytic performance of Cu/SiO2 catalyst for hydrogenation of dimethyl oxalate to ethylene glycol. Journal of Natural Gas Chemistry, 2012. 21(5): p. 563-570.
    74. He, L., Chen, X., Ma, J., He, H., and Wang, W., Characterization and catalytic performance of sol–gel derived Cu/SiO2 catalysts for hydrogenolysis of diethyl oxalate to ethylene glycol. Journal of Sol-Gel Science and Technology, 2010. 55(3): p. 285-292.
    75. Abbas, M., Chen, Z., Zhang, J., and Chen, J., Highly dispersed, ultra-small and noble metal-free Cu nanodots supported on porous SiO2 and their excellent catalytic hydrogenation of dimethyl oxalate to methyl glycolate. New Journal of Chemistry, 2018. 42(12): p. 10290-10299.
    76. Li, B., Li, L., Sun, H., and Zhao, C., Selective Deoxygenation of Aqueous Furfural to 2-Methylfuran over Cu0/Cu2O·SiO2 Sites via a Copper Phyllosilicate Precursor without Extraneous Gas. ACS Sustainable Chemistry & Engineering, 2018. 6(9): p. 12096-12103.
    77. Han, X.-Q., Zhang, Q.-F., Feng, F., Lu, C.-S., Ma, L., and Li, X.-N., Selective hydrogenation of dimethyl maleate to tetrahydrofuran over Cu/SiO2 catalyst: Effect of Cu+ on the catalytic performance. Chinese Chemical Letters, 2015. 26(9): p. 1150-1154.
    78. Wang, Y., Shen, Y., Zhao, Y., Lv, J., Wang, S., and Ma, X., Insight into the balancing effect of active Cu species for hydrogenation of carbon–oxygen bonds. ACS Catalysis, 2015. 5(10): p. 6200-6208.
    79. Wang, Z.-Q., Xu, Z.-N., Peng, S.-Y., Zhang, M.-J., Lu, G., Chen, Q.-S., Chen, Y., and Guo, G.-C., High-performance and long-lived Cu/SiO2 nanocatalyst for CO2 hydrogenation. ACS Catalysis, 2015. 5(7): p. 4255-4259.
    80. Ding, T., Tian, H., Liu, J., Wu, W., and Yu, J., Highly active Cu/SiO2 catalysts for hydrogenation of diethyl malonate to 1,3-propanediol. Chinese Journal of Catalysis, 2016. 37(4): p. 484-493.
    81. Li, F., Wang, L., Han, X., He, P., Cao, Y., and Li, H., Influence of support on the performance of copper catalysts for the effective hydrogenation of ethylene carbonate to synthesize ethylene glycol and methanol. RSC Advances, 2016. 6(51): p. 45894-45906.
    82. Sun, Y., Meng, F., Ge, Q., and Sun, J., Importance of the initial oxidation state of copper for the catalytic hydrogenation of dimethyl oxalate to ethylene glycol. ChemistryOpen, 2018. 7(12): p. 969-976.
    83. Zhu, Y., Kong, X., Yin, J., You, R., Zhang, B., Zheng, H., Wen, X., Zhu, Y., and Li, Y.-W., Covalent-bonding to irreducible SiO2 leads to high-loading and atomically dispersed metal catalysts. Journal of Catalysis, 2017. 353: p. 315-324.
    84. Dong, F., Zhu, Y., Zhao, H., and Tang, Z., Ratio-controlled synthesis of phyllosilicate-like materials as precursors for highly efficient catalysis of the formyl group. Catalysis Science & Technology, 2017. 7(9): p. 1880-1891.
    85. Di, W., Cheng, J., Tian, S., Li, J., Chen, J., and Sun, Q., Synthesis and characterization of supported copper phyllosilicate catalysts for acetic ester hydrogenation to ethanol. Applied Catalysis A: General, 2016. 510: p. 244-259.
    86. Qi, Y.T., Zhe, C.H., and Ning, X., Effect of Silica Particle Size on Texture, Structure, and Catalytic Performance of Cu/SiO2 Catalysts for Glycerol Hydrogenolysis. Russian Journal of Physical Chemistry A, 2018. 92(3): p. 449-455.
    87. Wang, Y., Yang, W., Yao, D., Wang, S., Xu, Y., Zhao, Y., and Ma, X., Effect of surface hydroxyl group of ultra-small silica on the chemical states of copper catalyst for dimethyl oxalate hydrogenation. Catalysis Today, 2020. 350: p. 127-135.
    88. Ciotonea, C., Dragoi, B., Ungureanu, A., Chirieac, A., Petit, S., Royer, S., and Dumitriu, E., Nanosized transition metals in controlled environments of phyllosilicate–mesoporous silica composites as highly thermostable and active catalysts. Chem. Commun., 2013. 49(69): p. 7665-7667.
    89. Wen, C., Yin, A., Cui, Y., Yang, X., Dai, W.-L., and Fan, K., Enhanced catalytic performance for SiO2–TiO2 binary oxide supported Cu-based catalyst in the hydrogenation of dimethyloxalate. Applied Catalysis A: General, 2013. 458: p. 82-89.
    90. Qin, H., Guo, C., Sun, C., and Zhang, J., Influence of the support composition on the hydrogenation of methyl acetate over Cu/MgO-SiO2 catalysts. Journal of Molecular Catalysis A: Chemical, 2015. 409: p. 79-84.
    91. Ye, C.-L., Guo, C.-L., and Zhang, J.-L., Highly active and stable CeO2–SiO2 supported Cu catalysts for the hydrogenation of methyl acetate to ethanol. Fuel Processing Technology, 2016. 143: p. 219-224.
    92. He, Z., Lin, H., He, P., and Yuan, Y., Effect of boric oxide doping on the stability and activity of a Cu–SiO2 catalyst for vapor-phase hydrogenation of dimethyl oxalate to ethylene glycol. Journal of Catalysis, 2011. 277(1): p. 54-63.
    93. Zhu, S., Gao, X., Zhu, Y., Zhu, Y., Zheng, H., and Li, Y., Promoting effect of boron oxide on Cu/SiO2 catalyst for glycerol hydrogenolysis to 1,2-propanediol. Journal of Catalysis, 2013. 303: p. 70-79.
    94. Zheng, X., Lin, H., Zheng, J., Duan, X., and Yuan, Y., Lanthanum oxide-modified Cu/SiO2 as a high-performance catalyst for chemoselective hydrogenation of dimethyl oxalate to ethylene glycol. ACS Catalysis, 2013. 3(12): p. 2738-2749.
    95. Huang, J., Ding, T., Ma, K., Cai, J., Sun, Z., Tian, Y., Jiang, Z., Zhang, J., Zheng, L., and Li, X., Modification of Cu/SiO2 catalysts by La2O3 to quantitatively tune Cu+-Cu0 dual sites with improved catalytic activities and stabilities for dimethyl ether steam reforming. ChemCatChem, 2018. 10(17): p. 3862-3871.
    96. Ai, P., Tan, M., Reubroycharoen, P., Wang, Y., Feng, X., Liu, G., Yang, G., and Tsubaki, N., Probing the promotional roles of cerium in the structure and performance of Cu/SiO2 catalysts for ethanol production. Catalysis Science & Technology, 2018. 8(24): p. 6441-6451.
    97. Zhang, Y., Ye, C., Guo, C., Gan, C., and Tong, X., In2O3-modified Cu/SiO2 as an active and stable catalyst for the hydrogenation of methyl acetate to ethanol. Chinese Journal of Catalysis, 2018. 39(1): p. 99-108.
    98. Zhang, C., Wang, D., and Dai, B., Promotive effect of Sn2+ on Cu0/Cu+ ratio and stability evolution of Cu/SiO2 catalyst in the hydrogenation of dimethyl oxalate. Catalysts, 2017. 7(4).
    99. Wang, C., Tian, Y., Wu, R., Li, H., Yao, B., Zhao, Y., and Xiao, T., Bimetallic synergy effects of phyllosilicate‐derived NiCu@SiO2 catalysts for 1,4‐butynediol direct hydrogenation to 1,4‐butanediol. ChemCatChem, 2019. 11(19): p. 4777-4787.
    100. Li, H., Cui, Y., Liu, Y., Zhang, L., Zhang, Q., Zhang, J., and Dai, W.-L., Highly efficient Ag-modified copper phyllosilicate nanotube: Preparation by co-ammonia evaporation hydrothermal method and application in the selective hydrogenation of carbonate. Journal of Materials Science & Technology, 2020. 47: p. 29-37.
    101. Yao, D., Wang, Y., Hassan-Legault, K., Li, A., Zhao, Y., Lv, J., Huang, S., and Ma, X., Balancing effect between adsorption and diffusion on catalytic performance inside hollow nanostructured catalyst. ACS Catalysis, 2019. 9(4): p. 2969-2976.
    102. Yin, A., Guo, X., Dai, W.-L., and Fan, K., Effect of initial precipitation temperature on the structural evolution and catalytic behavior of Cu/SiO2 catalyst in the hydrogenation of dimethyl oxalate. Catalysis Communications, 2011. 12(6): p. 412-416.
    103. Lin, H., Zheng, X., He, Z., Zheng, J., Duan, X., and Yuan, Y., Cu/SiO2 hybrid catalysts containing HZSM-5 with enhanced activity and stability for selective hydrogenation of dimethyl oxalate to ethylene glycol. Applied Catalysis A: General, 2012. 445-446: p. 287-296.
    104. Ye, R.-P., Lin, L., Yang, J.-X., Sun, M.-L., Li, F., Li, B., and Yao, Y.-G., A new low-cost and effective method for enhancing the catalytic performance of Cu–SiO2 catalysts for the synthesis of ethylene glycol via the vapor-phase hydrogenation of dimethyl oxalate by coating the catalysts with dextrin. Journal of Catalysis, 2017. 350: p. 122-132.
    105. Huang, Y., Ariga, H., Zheng, X., Duan, X., Takakusagi, S., Asakura, K., and Yuan, Y., Silver-modulated SiO2-supported copper catalysts for selective hydrogenation of dimethyl oxalate to ethylene glycol. Journal of Catalysis, 2013. 307: p. 74-83.
    106. Yue, H., Zhao, Y., Zhao, L., Lv, J., Wang, S., Gong, J., and Ma, X., Hydrogenation of dimethyl oxalate to ethylene glycol on a Cu/SiO2/cordierite monolithic catalyst: Enhanced internal mass transfer and stability. AIChE Journal, 2012. 58(9): p. 2798-2809.
    107. Huang, H., Wang, B., Wang, Y., Zhao, Y., Wang, S., and Ma, X., Partial hydrogenation of dimethyl oxalate on Cu/SiO2 catalyst modified by sodium silicate. Catalysis Today, 2020. 358: p. 68-73.
    108. Ding, J., Zhang, J., Zhang, C., Liu, K., Xiao, H., Kong, F., and Chen, J., Hydrogenation of diethyl oxalate over Cu/SiO2 catalyst with enhanced activity and stability: Contribution of the spatial restriction by varied pores of support. Applied Catalysis A: General, 2015. 508: p. 68-79.
    109. Ding, T., Tian, H., Liu, J., Wu, W., and Zhao, B., Effect of promoters on hydrogenation of diethyl malonate to 1,3-propanediol over nano copper-based catalysts. Catalysis Communications, 2016. 74: p. 10-15.
    110. Li, F., Wang, L., Han, X., Cao, Y., He, P., and Li, H., Selective hydrogenation of ethylene carbonate to methanol and ethylene glycol over Cu/SiO2 catalysts prepared by ammonia evaporation method. International Journal of Hydrogen Energy, 2017. 42(4): p. 2144-2156.
    111. Tu, C.-C., Tsou, Y.-J., To, T.D., Chen, C.-H., Lee, J.-F., Huber, G.W., and Lin, Y.-C., Phyllosilicate-derived CuNi/SiO2 catalysts in the selective hydrogenation of adipic acid to 1,6-hexanediol. ACS Sustainable Chemistry & Engineering, 2019. 7: p. 17872−17881.
    112. Tsou, Y.-J., To, T.D., Chiang, Y.-C., Lee, J.-F., Kumar, R., Chung, P.-W., and Lin, Y.-C., Hydrophobic copper catalysts derived from copper phyllosilicates in the hydrogenation of levulinic acid to γ-valerolactone. ACS Applied Materials & Interfaces, 2020. 12(49): p. 54851-54861.
    113. Yue, H., Zhao, Y., Ma, X., and Gong, J., Ethylene glycol: properties, synthesis, and applications. Chemical Society Reviews, 2012. 41(11): p. 4218-4244.
    114. An, X., Zuo, Y., Zhang, Q., and Wang, J., Methanol Synthesis from CO2 Hydrogenation with a Cu/Zn/Al/Zr Fibrous Catalyst. Chinese Journal of Chemical Engineering, 2009. 17(1): p. 88-94.
    115. Dong, X., Li, F., Zhao, N., Tan, Y., Wang, J., and Xiao, F., CO2 hydrogenation to methanol over Cu/Zn/Al/Zr catalysts prepared by liquid reduction. Chinese Journal of Catalysis, 2017. 38(4): p. 717-725.
    116. Phongamwong, T., Chantaprasertporn, U., Witoon, T., Numpilai, T., Poo-arporn, Y., Limphirat, W., Donphai, W., Dittanet, P., Chareonpanich, M., and Limtrakul, J., CO2 hydrogenation to methanol over CuO–ZnO–ZrO2–SiO2 catalysts: Effects of SiO2 contents. Chemical Engineering Journal, 2017. 316: p. 692-703.
    117. Chen, D., Mao, D., Xiao, J., Guo, X., and Yu, J., CO2 hydrogenation to methanol over CuO–ZnO–TiO2–ZrO2: a comparison of catalysts prepared by sol–gel, solid-state reaction and solution-combustion. Journal of Sol-Gel Science and Technology, 2018. 86(3): p. 719-730.
    118. Tan, Q., Shi, Z., and Wu, D., CO2 hydrogenation to methanol over a highly active Cu–Ni/CeO2–nanotube catalyst. Industrial & Engineering Chemistry Research, 2018. 57(31): p. 10148-10158.
    119. Wang, G., Mao, D., Guo, X., and Yu, J., Enhanced performance of the CuO-ZnO-ZrO2 catalyst for CO2 hydrogenation to methanol by WO3 modification. Applied Surface Science, 2018. 456: p. 403-409.
    120. Ting, K.W., Toyao, T., Siddiki, S.M.A.H., and Shimizu, K.-i., Low-Temperature Hydrogenation of CO2 to Methanol over Heterogeneous TiO2-Supported Re Catalysts. ACS Catalysis, 2019. 9(4): p. 3685-3693.
    121. Chou, C.-Y. and Lobo, R.F., Direct conversion of CO2 into methanol over promoted indium oxide-based catalysts. Applied Catalysis A: General, 2019. 583: p. 117144.
    122. Wang, G., Mao, D., Guo, X., and Yu, J., Methanol synthesis from CO2 hydrogenation over CuO-ZnO-ZrO2-MxOy catalysts (M=Cr, Mo and W). International Journal of Hydrogen Energy, 2019. 44(8): p. 4197-4207.
    123. Xiao, J., Mao, D., Wang, G., Guo, X., and Yu, J., CO2 hydrogenation to methanol over CuO-ZnO-TiO2-ZrO2 catalyst prepared by a facile solid-state route: The significant influence of assistant complexing agents. International Journal of Hydrogen Energy, 2019. 44(29): p. 14831-14841.
    124. Gonçalves, R.V., Vono, L.L.R., Wojcieszak, R., Dias, C.S.B., Wender, H., Teixeira-Neto, E., and Rossi, L.M., Selective hydrogenation of CO2 into CO on a highly dispersed nickel catalyst obtained by magnetron sputtering deposition: A step towards liquid fuels. Applied Catalysis B: Environmental, 2017. 209: p. 240-246.
    125. Zhao, B., Yan, B., Jiang, Z., Yao, S., Liu, Z., Wu, Q., Ran, R., Senanayake, S.D., Weng, D., and Chen, J.G., High selectivity of CO2 hydrogenation to CO by controlling the valence state of nickel using perovskite. Chemical Communications, 2018. 54(53): p. 7354-7357.
    126. Zhang, Y., Li, D., Zhang, S., Wang, K., and Wu, J., CO2 hydrogenation to dimethyl ether over CuO–ZnO–Al2O3/HZSM-5 prepared by combustion route. RSC Advances, 2014. 4(32): p. 16391-16396.
    127. Witoon, T., Permsirivanich, T., Kanjanasoontorn, N., Akkaraphataworn, C., Seubsai, A., Faungnawakij, K., Warakulwit, C., Chareonpanich, M., and Limtrakul, J., Direct synthesis of dimethyl ether from CO2 hydrogenation over Cu–ZnO–ZrO2/SO42−–ZrO2 hybrid catalysts: effects of sulfur-to-zirconia ratios. Catalysis Science & Technology, 2015. 5(4): p. 2347-2357.
    128. Zhou, X., Su, T., Jiang, Y., Qin, Z., Ji, H., and Guo, Z., CuO-Fe2O3-CeO2/HZSM-5 bifunctional catalyst hydrogenated CO2 for enhanced dimethyl ether synthesis. Chemical Engineering Science, 2016. 153: p. 10-20.
    129. Suwannapichat, Y., Numpilai, T., Chanlek, N., Faungnawakij, K., Chareonpanich, M., Limtrakul, J., and Witoon, T., Direct synthesis of dimethyl ether from CO2 hydrogenation over novel hybrid catalysts containing a CuZnOZrO2 catalyst admixed with WOx/Al2O3 catalysts: Effects of pore size of Al2O3 support and W loading content. Energy Conversion and Management, 2018. 159: p. 20-29.
    130. Michailos, S., McCord, S., Sick, V., Stokes, G., and Styring, P., Dimethyl ether synthesis via captured CO2 hydrogenation within the power to liquids concept: A techno-economic assessment. Energy Conversion and Management, 2019. 184: p. 262-276.
    131. Li, W., Wang, K., Zhan, G., Huang, J., and Li, Q., Hydrogenation of CO2 to dimethyl ether over tandem catalysts based on biotemplated hierarchical ZSM-5 and Pd/ZnO. ACS Sustainable Chemistry & Engineering, 2020. 8(37): p. 14058-14070.
    132. Falcinelli, S., Capriccioli, A., Pirani, F., Vecchiocattivi, F., Stranges, S., Martì, C., Nicoziani, A., Topini, E., and Laganà, A., Methane production by CO2 hydrogenation reaction with and without solid phase catalysis. Fuel, 2017. 209: p. 802-811.
    133. Martin, N.M., Velin, P., Skoglundh, M., Bauer, M., and Carlsson, P.-A., Catalytic hydrogenation of CO2 to methane over supported Pd, Rh and Ni catalysts. Catalysis Science & Technology, 2017. 7(5): p. 1086-1094.
    134. Liu, H., Xu, S., Zhou, G., Xiong, K., Jiao, Z., and Wang, S., CO2 hydrogenation to methane over Co/KIT-6 catalysts: Effect of Co content. Fuel, 2018. 217: p. 570-576.
    135. Xie, C., Chen, C., Yu, Y., Su, J., Li, Y., Somorjai, G.A., and Yang, P., Tandem catalysis for CO2 hydrogenation to C2–C4 hydrocarbons. Nano Letters, 2017. 17(6): p. 3798-3802.
    136. Camposmartin, J.M., Guerreroruiz, A., and Fierro, J.L.G., Structural and surface properties of CuO-ZnO-Cr2O3 catalysts and their relationship with selectivity to higher alcohol synthesis. Journal of Catalysis, 1995. 156(2): p. 208-218.
    137. Zegkinoglou, I., Pielsticker, L., Han, Z.-K., Divins, N.J., Kordus, D., Chen, Y.-T., Escudero, C., Pérez-Dieste, V., Zhu, B., Gao, Y., and Cuenya, B.R., Surface segregation in CuNi nanoparticle catalysts during CO2 hydrogenation: The role of CO in the reactant mixture. The Journal of Physical Chemistry C, 2019. 123(13): p. 8421-8428.
    138. Zhu, S., Gao, X., Zhu, Y., Fan, W., Wang, J., and Li, Y., A highly efficient and robust Cu/SiO2 catalyst prepared by the ammonia evaporation hydrothermal method for glycerol hydrogenolysis to 1,2-propanediol. Catalysis Science & Technology, 2015. 5(2): p. 1169-1180.
    139. van den Berg, R., Parmentier, T.E., Elkjær, C.F., Gommes, C.J., Sehested, J., Helveg, S., de Jongh, P.E., and de Jong, K.P., Support functionalization to retard Ostwald Ripening in copper methanol synthesis catalysts. ACS Catalysis, 2015. 5(7): p. 4439-4448.
    140. Wen, C., Cui, Y., Dai, W.-L., Xie, S., and Fan, K., Solvent feedstock effect: the insights into the deactivation mechanism of Cu/SiO2 catalysts for hydrogenation of dimethyl oxalate to ethylene glycol. Chemical Communications, 2013. 49(45): p. 5195-5197.
    141. Wu, T., Zhang, Q., Cai, W., Zhang, P., Song, X., Sun, Z., and Gao, L., Phyllosilicate evolved hierarchical Ni- and Cu–Ni/SiO2 nanocomposites for methane dry reforming catalysis. Applied Catalysis A: General, 2015. 503: p. 94-102.
    142. Wang, X., Ma, K., Guo, L., Tian, Y., Cheng, Q., Bai, X., Huang, J., Ding, T., and Li, X., Cu/ZnO/SiO2 catalyst synthesized by reduction of ZnO-modified copper phyllosilicate for dimethyl ether steam reforming. Applied Catalysis A: General, 2017. 540: p. 37-46.
    143. Zhang, H., Tan, H.-R., Jaenicke, S., and Chuah, G.-K., Highly efficient and robust Cu catalyst for non-oxidative dehydrogenation of ethanol to acetaldehyde and hydrogen. Journal of Catalysis, 2020. 389: p. 19-28.
    144. Chen, W., Song, T., Tian, J., Wu, P., and Li, X., An efficient Cu-based catalyst for the hydrogenation of ethylene carbonate to ethylene glycol and methanol. Catalysis Science & Technology, 2019. 9(23): p. 6749-6759.
    145. Wang, M., Yao, D., Li, A., Yang, Y., Lv, J., Huang, S., Wang, Y., and Ma, X., Enhanced selectivity and stability of Cu/SiO2 catalysts for dimethyl oxalate hydrogenation to ethylene glycol by using silane coupling agents for surface modification. Industrial & Engineering Chemistry Research, 2020. 59(20): p. 9414-9422.
    146. Natesakhawat, S., Lekse, J.W., Baltrus, J.P., Ohodnicki, P.R., Howard, B.H., Deng, X., and Matranga, C., Active Sites and Structure–Activity Relationships of Copper-Based Catalysts for Carbon Dioxide Hydrogenation to Methanol. ACS Catalysis, 2012. 2(8): p. 1667-1676.
    147. Chinchen, G.C. and Waugh, K.C., The chemical state of copper during methanol synthesis. Journal of Catalysis, 1986. 97(1): p. 280-283.
    148. Reinholdt, M.X., Brendlé, J., Tuilier, M.-H., Kaliaguine, S., and Ambroise, E. Hydrothermal Synthesis and Characterization of Ni-Al Montmorillonite-Like Phyllosilicates. Nanomaterials, 2013. 3, 48-69 DOI: 10.3390/nano3010048.
    149. Kattel, S., Ramírez Pedro, J., Chen Jingguang, G., Rodriguez José, A., and Liu, P., Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science, 2017. 355(6331): p. 1296-1299.
    150. Zabilskiy, M., Sushkevich, V.L., Newton, M.A., and van Bokhoven, J.A., Copper–Zinc Alloy-Free Synthesis of Methanol from Carbon Dioxide over Cu/ZnO/Faujasite. ACS Catalysis, 2020: p. 14240-14244.
    151. Coenen, K., Gallucci, F., Mezari, B., Hensen, E., and van Sint Annaland, M., An in-situ IR study on the adsorption of CO2 and H2O on hydrotalcites. Journal of CO2 Utilization, 2018. 24: p. 228-239.
    152. Wilfong, W.C., Srikanth, C.S., and Chuang, S.S.C., In Situ ATR and DRIFTS Studies of the Nature of Adsorbed CO2 on Tetraethylenepentamine Films. ACS Applied Materials & Interfaces, 2014. 6(16): p. 13617-13626.
    153. Eskander, S.M.S.U. and Fankhauser, S., Reduction in greenhouse gas emissions from national climate legislation. Nature Climate Change, 2020. 10(8): p. 750-756.
    154. Le Quéré, C., Korsbakken, J.I., Wilson, C., Tosun, J., Andrew, R., Andres, R.J., Canadell, J.G., Jordan, A., Peters, G.P., and van Vuuren, D.P., Drivers of declining CO2 emissions in 18 developed economies. Nature Climate Change, 2019. 9(3): p. 213-217.
    155. Kondratenko, E.V., Mul, G., Baltrusaitis, J., Larrazábal, G.O., and Pérez-Ramírez, J., Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy & Environmental Science, 2013. 6(11): p. 3112-3135.
    156. Sharma, P., Sebastian, J., Ghosh, S., Creaser, D., and Olsson, L., Recent advances in hydrogenation of CO2 into hydrocarbons via methanol intermediate over heterogeneous catalysts. Catalysis Science & Technology, 2021. 11(5): p. 1665-1697.
    157. Ronda-Lloret, M., Rothenberg, G., and Shiju, N.R., A critical look at direct catalytic hydrogenation of carbon dioxide to olefins. ChemSusChem, 2019. 12(17): p. 3896-3914.
    158. Ye, R.P., Ding, J., Gong, W., Argyle, M.D., Zhong, Q., Wang, Y., Russell, C.K., Xu, Z., Russell, A.G., Li, Q., Fan, M., and Yao, Y.G., CO2 hydrogenation to high-value products via heterogeneous catalysis. Nature Communications, 2019. 10(1): p. 5698.
    159. Zhang, Z., Yin, H., Yu, G., He, S., Kang, J., Liu, Z., Cheng, K., Zhang, Q., and Wang, Y., Selective hydrogenation of CO2 and CO into olefins over sodium- and zinc-promoted iron carbide catalysts. Journal of Catalysis, 2021. 395: p. 350-361.
    160. Peña, D., Jensen, L., Cognigni, A., Myrstad, R., Neumayer, T., van Beek, W., and Rønning, M., The effect of copper loading on iron carbide formation and surface species in iron-based Fischer–Tropsch synthesis catalysts. ChemCatChem, 2018. 10(6): p. 1300-1312.
    161. Porosoff, M.D., Yan, B., and Chen, J.G., Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: challenges and opportunities. Energy & Environmental Science, 2016. 9(1): p. 62-73.
    162. Taghavi, S., Asghari, A., and Tavasoli, A., Enhancement of performance and stability of graphene nano sheets supported cobalt catalyst in Fischer–Tropsch synthesis using graphene functionalization. Chemical Engineering Research and Design, 2017. 119: p. 198-208.
    163. Chernyak, S.A., Stolbov, D.N., Ivanov, A.S., Klokov, S.V., Egorova, T.B., Maslakov, K.I., Eliseev, O.L., Maximov, V.V., Savilov, S.V., and Lunin, V.V., Effect of type and localization of nitrogen in graphene nanoflake support on structure and catalytic performance of Co-based Fischer-Tropsch catalysts. Catalysis Today, 2020. 357: p. 193-202.
    164. Lu, J., Yang, L., Xu, B., Wu, Q., Zhang, D., Yuan, S., Zhai, Y., Wang, X., Fan, Y., and Hu, Z., Promotion effects of nitrogen doping into carbon nanotubes on supported iron Fischer–Tropsch catalysts for lower olefins. ACS Catalysis, 2014. 4(2): p. 613-621.
    165. Schulte, H.J., Graf, B., Xia, W., and Muhler, M., Nitrogen- and oxygen-functionalized multiwalled carbon nanotubes used as support in iron-catalyzed, high-temperature Fischer–Tropsch synthesis. ChemCatChem, 2012. 4(3): p. 350-355.
    166. Wang, J. and Wang, S., A critical review on graphitic carbon nitride (g-C3N4)-based materials: Preparation, modification and environmental application. Coordination Chemistry Reviews, 2022. 453: p. 214338.
    167. Park, H., Youn, D.H., Kim, J.Y., Kim, W.Y., Choi, Y.H., Lee, Y.H., Choi, S.H., and Lee, J.S., Selective formation of Hägg iron carbide with g-C3N4 as a sacrificial support for highly active Fischer–Tropsch synthesis. ChemCatChem, 2015. 7(21): p. 3488-3494.
    168. Eissa, A.A., Peera, S.G., Kim, N.H., and Lee, J.H., g-C3N4 templated synthesis of the Fe3C@NSC electrocatalyst enriched with Fe–Nx active sites for efficient oxygen reduction reaction. Journal of Materials Chemistry A, 2019. 7(28): p. 16920-16936.
    169. Zhang, B., Chen, J., Guo, H., Le, M., Guo, H., Li, Z., and Wang, L., Iron carbide nanoparticles supported by nitrogen-doped carbon nanosheets for oxygen reduction. ACS Applied Nano Materials, 2021. 4(8): p. 8360-8367.
    170. Trangwachirachai, K., Chen, C.-H., Huang, A.-L., Lee, J.-F., Chen, C.-L., and Lin, Y.-C., Conversion of methane to acetonitrile over GaN catalysts derived from gallium nitrate hydrate co-pyrolyzed with melamine, melem, or g-C3N4: The influence of nitrogen precursors. Catalysis Science & Technology, 2022. 12(1): p. 320-331.
    171. Gao, J., Wang, Y., Zhou, S., Lin, W., and Kong, Y., A facile one-step synthesis of Fe-doped g-C3N4 nanosheets and their improved visible-light photocatalytic performance. ChemCatChem, 2017. 9(9): p. 1708-1715.
    172. Wang, C., Kang, J., Liang, P., Zhang, H., Sun, H., Tadé, M.O., and Wang, S., Ferric carbide nanocrystals encapsulated in nitrogen-doped carbon nanotubes as an outstanding environmental catalyst. Environmental Science: Nano, 2017. 4(1): p. 170-179.
    173. Ghosh, S. and Ramaprabhu, S., Green synthesis of transition metal nanocrystals encapsulated into nitrogen-doped carbon nanotubes for efficient carbon dioxide capture. Carbon, 2019. 141: p. 692-703.
    174. Zhao, W. and Tan, W.-F., Quantitative and structural analysis of minerals in soil clay fractions developed under different climate zones in China by XRD with Rietveld method, and its implications for pedogenesis. Applied Clay Science, 2018. 162: p. 351-361.
    175. Ravel, B. and Newville, M., ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. Journal of Synchrotron Radiation, 2005. 12(4): p. 537-541.
    176. Li, X., Zhang, J., Shen, L., Ma, Y., Lei, W., Cui, Q., and Zou, G., Preparation and characterization of graphitic carbon nitride through pyrolysis of melamine. Applied Physics A, 2009. 94(2): p. 387-392.
    177. Greczynski, G., Primetzhofer, D., Lu, J., and Hultman, L., Core-level spectra and binding energies of transition metal nitrides by non-destructive x-ray photoelectron spectroscopy through capping layers. Applied Surface Science, 2017. 396: p. 347-358.
    178. Dou, H., Zheng, S., and Zhang, Y., The effect of metallic Fe(II) and nonmetallic S codoping on the photocatalytic performance of graphitic carbon nitride. RSC Advances, 2018. 8(14): p. 7558-7568.
    179. An, S., Zhang, G., Wang, T., Zhang, W., Li, K., Song, C., Miller, J.T., Miao, S., Wang, J., and Guo, X., High-density ultra-small clusters and single-atom Fe sites embedded in graphitic carbon nitride (g-C3N4) for highly efficient catalytic advanced oxidation processes. ACS Nano, 2018. 12(9): p. 9441-9450.
    180. Peng, H., Zhang, M., Sun, K., Xie, X., Lei, H., and Ma, G., Nitrogen-doped carbon nanoflowers with in situ generated Fe3C embedded carbon nanotubes for efficient oxygen reduction electrocatalysts. Applied Surface Science, 2020. 529: p. 147174.
    181. Amoyal, M., Vidruk-Nehemya, R., Landau, M.V., and Herskowitz, M., Effect of potassium on the active phases of Fe catalysts for carbon dioxide conversion to liquid fuels through hydrogenation. Journal of Catalysis, 2017. 348: p. 29-39.
    182. Poulin, S., França, R., Moreau-Bélanger, L., and Sacher, E., Confirmation of X-ray Photoelectron Spectroscopy Peak Attributions of Nanoparticulate Iron Oxides, Using Symmetric Peak Component Line Shapes. The Journal of Physical Chemistry C, 2010. 114(24): p. 10711-10718.
    183. Ma, T., Shen, Q., Xue, B.Z.J., Guan, R., Liu, X., Jia, H., and Xu, B., Facile synthesis of Fe-doped g-C3N4 for enhanced visible-light photocatalytic activity. Inorganic Chemistry Communications, 2019. 107: p. 107451.
    184. Cao, H., Wang, J., Kim, J.-H., Guo, Z., Xiao, J., Yang, J., Chang, J., Shi, Y., and Xie, Y., Different roles of Fe atoms and nanoparticles on g-C3N4 in regulating the reductive activation of ozone under visible light. Applied Catalysis B: Environmental, 2021. 296: p. 120362.
    185. Tan, H., Li, Y., Kim, J., Takei, T., Wang, Z., Xu, X., Wang, J., Bando, Y., Kang, Y.-M., Tang, J., and Yamauchi, Y., Sub-50 nm iron–nitrogen-doped hollow carbon sphere-encapsulated iron carbide nanoparticles as efficient oxygen reduction catalysts. Advanced Science, 2018. 5(7): p. 1800120.
    186. Zhu, J., Wang, P., Zhang, X., Zhang, G., Li, R., Li, W., Senftle, T.P., Liu, W., Wang, J., Wang, Y., Zhang, A., Fu, Q., Song, C., and Guo, X., Dynamic structural evolution of iron catalysts involving competitive oxidation and carburization during CO2 hydrogenation. Science Advances, 2022. 8(5): p. eabm3629.
    187. Jiang, W.-J., Gu, L., Li, L., Zhang, Y., Zhang, X., Zhang, L.-J., Wang, J.-Q., Hu, J.-S., Wei, Z., and Wan, L.-J., Understanding the high activity of Fe–N–C eectrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe–Nx. Journal of the American Chemical Society, 2016. 138(10): p. 3570-3578.
    188. Qiu, P., Chen, H., Xu, C., Zhou, N., Jiang, F., Wang, X., and Fu, Y., Fabrication of an exfoliated graphitic carbon nitride as a highly active visible light photocatalyst. Journal of Materials Chemistry A, 2015. 3(48): p. 24237-24244.
    189. Yu, S., Bo, J., Fengli, L., and Jiegang, L., Structure and fractal characteristic of micro- and meso-pores in low, middle-rank tectonic deformed coals by CO2 and N2 adsorption. Microporous and Mesoporous Materials, 2017. 253: p. 191-202.
    190. Thomas, A., Fischer, A., Goettmann, F., Antonietti, M., Müller, J.-O., Schlögl, R., and Carlsson, J.M., Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. Journal of Materials Chemistry, 2008. 18(41): p. 4893-4908.
    191. Che, W., Cheng, W., Yao, T., Tang, F., Liu, W., Su, H., Huang, Y., Liu, Q., Liu, J., Hu, F., Pan, Z., Sun, Z., and Wei, S., Fast photoelectron transfer in (Cring)–C3N4 plane heterostructural nanosheets for overall water splitting. Journal of the American Chemical Society, 2017. 139(8): p. 3021-3026.
    192. Zhu, B., Xia, P., Ho, W., and Yu, J., Isoelectric point and adsorption activity of porous g-C3N4. Applied Surface Science, 2015. 344: p. 188-195.
    193. Zhang, J.-R., Ma, Y., Wang, S.-Y., Ding, J., Gao, B., Kan, E., and Hua, W., Accurate K-edge X-ray photoelectron and absorption spectra of g-C3N4 nanosheets by first-principles simulations and reinterpretations. Physical Chemistry Chemical Physics, 2019. 21(41): p. 22819-22830.
    194. Zou, H., Yan, X., Ren, J., Wu, X., Dai, Y., Sha, D., Pan, J., and Liu, J., Photocatalytic activity enhancement of modified g-C3N4 by ionothermal copolymerization. Journal of Materiomics, 2015. 1(4): p. 340-347.
    195. Liu, Q., Guo, Y., Chen, Z., Zhang, Z., and Fang, X., Constructing a novel ternary Fe(III)/graphene/g-C3N4 composite photocatalyst with enhanced visible-light driven photocatalytic activity via interfacial charge transfer effect. Applied Catalysis B: Environmental, 2016. 183: p. 231-241.
    196. Huwe, H. and Fröba, M., Synthesis and characterization of transition metal and metal oxide nanoparticles inside mesoporous carbon CMK-3. Carbon, 2007. 45(2): p. 304-314.
    197. Wiles, A.B., Bozzuto, D., Cahill, C.L., and Pike, R.D., Copper (I) and (II) complexes of melamine. Polyhedron, 2006. 25(3): p. 776-782.
    198. Yuan, X., Luo, K., Zhang, K., He, J., Zhao, Y., and Yu, D., Combinatorial Vibration-Mode Assignment for the FTIR Spectrum of Crystalline Melamine: A Strategic Approach toward Theoretical IR Vibrational Calculations of Triazine-Based Compounds. The Journal of Physical Chemistry A, 2016. 120(38): p. 7427-7433.
    199. Wei, J., Sun, J., Wen, Z., Fang, C., Ge, Q., and Xu, H., New insights into the effect of sodium on Fe3O4-based nanocatalysts for CO2 hydrogenation to light olefins. Catalysis Science & Technology, 2016. 6(13): p. 4786-4793.
    200. Jiang, F., Liu, B., Geng, S., Xu, Y., and Liu, X., Hydrogenation of CO2 into hydrocarbons: enhanced catalytic activity over Fe-based Fischer–Tropsch catalysts. Catalysis Science & Technology, 2018. 8(16): p. 4097-4107.
    201. Wei, C., Tu, W., Jia, L., Liu, Y., Lian, H., Wang, P., and Zhang, Z., The evolutions of carbon and iron species modified by Na and their tuning effect on the hydrogenation of CO2 to olefins. Applied Surface Science, 2020. 525: p. 146622.
    202. Numpilai, T., Chanlek, N., Poo-Arporn, Y., Cheng, C.K., Siri-Nguan, N., Sornchamni, T., Chareonpanich, M., Kongkachuichay, P., Yigit, N., Rupprechter, G., Limtrakul, J., and Witoon, T., Tuning interactions of surface-adsorbed species over Fe−Co/K−Al2O3 catalyst by different K contents: Selective CO2 hydrogenation to light olefins. ChemCatChem, 2020. 12(12): p. 3306-3320.
    203. Wang, S., Wu, T., Lin, J., Ji, Y., Yan, S., Pei, Y., Xie, S., Zong, B., and Qiao, M., Iron–Potassium on Single-Walled Carbon Nanotubes as Efficient Catalyst for CO2 Hydrogenation to Heavy Olefins. ACS Catalysis, 2020. 10(11): p. 6389-6401.
    204. Han, Y., Fang, C., Ji, X., Wei, J., Ge, Q., and Sun, J., Interfacing with Carbonaceous Potassium Promoters Boosts Catalytic CO2 Hydrogenation of Iron. ACS Catalysis, 2020. 10(20): p. 12098-12108.
    205. Zhang, P., Han, F., Yan, J., Qiao, X., Guan, Q., and Li, W., N-doped ordered mesoporous carbon (N-OMC) confined Fe3O4-FeCx heterojunction for efficient conversion of CO2 to light olefins. Applied Catalysis B: Environmental, 2021. 299: p. 120639.
    206. Tu, W., Sun, C., Zhang, Z., Liu, W., Malhi, H.S., Ma, W., Zhu, M., and Han, Y.-F., Chemical and structural properties of Na decorated Fe5C2-ZnO catalysts during hydrogenation of CO2 to linear α-olefins. Applied Catalysis B: Environmental, 2021. 298: p. 120567.
    207. Huang, J., Jiang, S., Wang, M., Wang, X., Gao, J., and Song, C., Dynamic Evolution of Fe and Carbon Species over Different ZrO2 Supports during CO Prereduction and Their Effects on CO2 Hydrogenation to Light Olefins. ACS Sustainable Chemistry & Engineering, 2021. 9(23): p. 7891-7903.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE