簡易檢索 / 詳目顯示

研究生: 周靖棨
Chou, Ching-Chi
論文名稱: 無鉛無機鈣鈦礦之光電電阻式記憶體開發
Optoelectronic ReRAM Devices Based on Lead-Free Inorganic Halide Perovskite
指導教授: 王永和
Wang, Yeong-Her
學位類別: 碩士
Master
系所名稱: 智慧半導體及永續製造學院 - 半導體製程學位學程
Program on Semiconductor Manufacturing Technology
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 152
中文關鍵詞: 自動儲存視覺感測器Cs2AgBiBr6全光邏輯閘操作無鉛鹵素鈣鈦礦奈米晶體光電電阻式記憶體
外文關鍵詞: Automatic storage vision sensors, Cs2AgBiBr6, Full-optical logic gate operation, Lead-free halide perovskite, Nanocrystals, Optoelectronic resistive memory (ORRAM)
相關次數: 點閱:117下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來人工智慧的市場迅速崛起,對於發展人工智慧要求的硬體條件也愈來愈被人們重視,例如更高速的運算速度,以及提高運算與記憶單元的密度,因此許多可以供應記憶體內運算的新興非揮發性記憶體將成為下個世代的主流記憶單元。非揮發性電阻式記憶體即是出色的候選者之一,其具有簡單的金屬-絕緣體-金屬(MIM)之結構,並且在功耗、切換速度、元件密度等各方面都具有極大的潛力,是目前各大企業與學術單位投注心力研究的主題之一。
    本論文研究以Cs3BiBr6 (CBB NCs)的奈米晶體作為插入層,插入Cs2AgBiBr6 (CABB)之無鉛無機鈣鈦礦中形成三明治結構,此元件除了有良好的開關比與多級儲存能力之外,更改善了電操作可靠度問題,提升了操作耐久度與資料保持能力;另外本論文也針對此元件在紫外光照射下之特性進行研究,探討作為光操作記憶體之可行性,最終成功使用無鉛鈣鈦礦材料開發出光操作記憶體,並嘗試將此元件應用於自動儲存視覺感測器與簡易全光控邏輯閘,證明了此元件可以用於整合光感測器與記憶體之功能,並且在簡單邏輯運算應用中具有潛力,期望此新穎的特性可以更進一步發展為有競爭力的產品。

    In recent years, the market for artificial intelligence has experienced rapid growth. Consequently, there has been an increasing emphasis on the hardware requirements for developing artificial intelligence, such as faster computational speeds and higher densities for computing and memory units. As a result, many emerging non-volatile memory technologies capable of in-memory computing are poised to become the mainstream memory units of the next generation.
    One standout candidate is non-volatile resistive memory, which features a simple metal-insulator-metal (MIM) structure. It exhibits significant potential in terms of power consumption, switching speed, and device density. Therefore, it has become a focal point of research efforts by major corporations and academic institutions alike.
    This study investigates the use of Cs3BiBr6 nanocrystals (CBB NCs) as an insertion layer to form a sandwich structure with Cs2AgBiBr6 (CABB) lead-free inorganic perovskite. This device not only exhibits excellent switching ratio and multi-level storage capability but also addresses the reliability issues associated with electrical operation, thereby enhancing endurance and data retention. Additionally, this study examines the characteristics of this device under ultraviolet irradiation, exploring its feasibility as an optically operated memory. Ultimately, the successful development of an optoelectronic memory using lead-free perovskite material is achieved. Furthermore, attempts are made to apply this device to automatic storage vision sensors and simple logic gates, demonstrating its potential for integrating the functions of light sensors and memory. It is anticipated that these novel features could be further developed into competitive products.

    摘要 I Abstract II Acknowledgements IV Table of Contents VIII List of Figures XIII List of Tables XXI CHAPTER 1 Introduction 1 1.1 Background 1 1.2 Motivation 4 1.3 Organization of the Thesis 7 CHAPTER 2 Literature Review 9 2.1 Introduction of Non-volatile Memory 9 2.2 Emerging Non-volatile Memory 10 2.2.1 Magnetoresistive Random Access Memory (MRAM) 10 2.2.2 Ferroelectric Random Access Memory (FeRAM) 12 2.2.3 Phase-change Random Access Memory (PCRAM) 13 2.2.4 Resistive Random Access Memory (ReRAM) 14 2.3 Resistive Random Access Memory 16 2.3.1 Fundamental Definitions 16 2.3.2 Resistive Switching Behaviors 17 2.3.3 Insulator Materials 19 2.3.3.1 Organic Materials 19 2.3.3.2 Two-dimensional Materials 20 2.3.3.3 Transition Metal Oxide 20 2.3.3.4 Perovskite Materials 20 2.3.4 Conduction Mechanisms 21 2.3.4.1 Ohmic Conduction 21 2.3.4.2 Schottky Emission 22 2.3.4.3 Poole-Frenkel Emission 23 2.3.4.4 Hopping Conduction 24 2.3.4.5 Space-charge-limited-current 25 2.3.4.6 Tunneling 28 2.4 Overview of Perovskite Materials 30 2.4.1 Halide Perovskite Materials 31 2.4.2 All-inorganic Perovskite Materials 32 2.4.3 Lead-based Halide Perovskite Materials 33 2.4.4 Lead-free Halide Perovskite Materials 35 CHAPTER 3 Experimental Section 38 3.1 Fabrication Equipment 38 3.1.1 Hotplate Magnetic Stirrer 38 3.1.2 Spin Coater 38 3.1.3 Programmable Oven 39 3.1.4 UV-Ozone Cleaner 40 3.1.5 Ultrasonic Cleaner 41 3.1.6 Thermal Evaporator 41 3.1.7 Direct Current Sputter (DC Sputter) 42 3.1.8 Electron Beam Evaporator 43 3.2 Material Analysis Equipment 44 3.2.1 Scanning Probe Microscopes (SPMs) 44 3.2.2 2D X-ray Diffractometer (XRD) 45 3.2.3 X-ray Photoelectron Spectroscopy (XPS) 46 3.2.4 Energy-dispersive X-ray Spectroscopy (EDS) 47 3.2.5 Focused Ion Beam (FIB) 48 3.2.6 Scanning Electron Microscope (SEM) 49 3.2.7 Transmission Electron Microscopy (TEM) 50 3.3 Electrical Analysis Equipment 52 3.3.1 Semiconductor Device Parameter Analyzer (B1500A) 52 3.4 Optical Analysis Equipment 52 3.4.1 Ultraviolet-visible Spectrophotometer (UV-Vis) 52 3.5 Materials 53 3.5.1 Substrates and Chemicals 53 3.5.2 Sputtering Target and Evaporation Source 55 3.6 Device Structure 55 3.7 Fabrication Process 55 3.7.1 Substrate Preparation 56 3.7.1.1 Substrate Cleaning 56 3.7.1.2 ITO Surface Treatment 56 3.7.2 Precursor Solution and Powder Preparation 57 3.7.2.1 Cs2AgBiBr6 (CABB) Powder Synthesis 57 3.7.2.2 Cs3BiBr6 (CBB) Nanocrystals Synthesis 58 3.7.3 RRAM Devices Fabrication Process 59 3.7.3.1 Cs2AgBiBr6 (CABB) Layer Deposition 59 3.7.3.2 Cs3BiBr6 (CBB) NCs Layer Deposition 60 3.7.3.3 Top Electrode Deposition 61 CHAPTER 4 Results and Discussion 63 4.1 Devices Structures 63 4.2 Energy Band Diagram 63 4.3 Physical Properties 64 4.3.1 TEM image of Device Cross-section View 64 4.3.2 SEM image of Device Top View 65 4.3.3 Energy Dispersive Spectroscopy of Elements Analysis 65 4.3.4 X-ray Diffraction Analysis 68 4.3.5 Chemical Composition Analysis 69 4.3.6 Surface Morphology Analysis 71 4.3.7 Surface Current Distribution Analysis 72 4.4 Electrical Properties 74 4.4.1 DC I-V Characteristics 74 4.4.2 Conduction Mechanism Analysis 76 4.4.3 Multi-level Storage 79 4.4.4 DC Endurance 80 4.4.5 Cumulative Probability 83 4.4.6 Data Retention 86 4.4.7 Switching Voltage Variation 87 4.4.8 Device-to-Device Uniformity 88 4.4.9 Pulse Operation 89 4.4.10 Synaptic Characteristics 90 4.4.11 MIM Structure C-V Characteristics 94 4.4.12 Conductive Mechanism Models (Electrical operation) 95 4.5 Perovskite Memristor Photo-electronic Properties 97 4.5.1 Absorption Spectrum 97 4.5.2 Transmittance Spectrum 98 4.5.3 Investigation of the Switching Layer Thickness 99 4.5.4 Investigation of the NCs Precursor Concentration 103 4.5.5 Investigation of the Top Electrodes 105 4.5.6 All-optical Operation 107 4.5.7 Endurance 107 4.5.8 Data Retention 108 4.5.9 Device-to-Device Uniformity 109 4.5.10 Conductive Mechanism Models (Optical operation) 110 4.6 Application 114 4.6.1 Pattern Recognition Simulation 114 4.6.2 Storing Light Information 116 4.6.3 Logic Gate 118 CHAPTER 5 Conclusion 121 CHAPTER 6 Future Works 122 References 124

    [1] R. Micheloni, 3D Flash Memories. 2016, pp. 1-380.
    [2] A. Chen, "A review of emerging non-volatile memory (NVM) technologies and applications," Solid-State Electronics, vol. 125, pp. 25-38, 2016.
    [3] C. M. Compagnoni, A. Goda, A. S. Spinelli, P. Feeley, A. L. Lacaita, and A. Visconti, "Reviewing the Evolution of the NAND Flash Technology," Proceedings of the IEEE, vol. 105, no. 9, pp. 1609-1633, 2017.
    [4] J. S. Meena, S. M. Sze, U. Chand, and T.-Y. Tseng, "Overview of emerging nonvolatile memory technologies," Nanoscale Research Letters, vol. 9, no. 1, p. 526, 2014.
    [5] B. Dang, K. Liu, X. Wu, Z. Yang, L. Xu, Y. Yang, and R. Huang, "One-Phototransistor–One-Memristor Array with High-Linearity Light-Tunable Weight for Optic Neuromorphic Computing," Advanced Materials, vol. 35, no. 37, p. 2204844, 2023.
    [6] F. Lv, T. Zhong, Y. Qin, H. Qin, W. Wang, F. Liu, and W. Kong, "Resistive Switching Characteristics Improved by Visible-Light Irradiation in a Cs2AgBiBr6-Based Memory Device," Nanomaterials, vol. 11, no. 6, p. 1361, 2021.
    [7] X. Cao, Z. Ma, T. Cheng, Y. Wang, Z. Shi, J. Wang, and L. Zhang, "Air-Stable, Eco-Friendly RRAMs Based on Lead-Free Cs3Bi2Br9 Perovskite Quantum Dots for High-Performance Information Storage," Energy & Environmental Materials, vol. 6, no. 5, p. e12419, 2023.
    [8] H. Ye, Z. Liu, B. Sun, X. Zhang, T. Shi, and G. Liao, "Optoelectronic Resistive Memory Based on Lead-Free Cs2AgBiBr6 Double Perovskite for Artificial Self-Storage Visual Sensors," Advanced Electronic Materials, vol. 9, no. 2, p. 2200657, 2023.
    [9] R. Topaloglu and H. S. Wong, Beyond-CMOS Technologies for Next Generation Computer Design. 2019, pp. 1-262.
    [10] S. Yu, Resistive Random Access Memory (RRAM) From Devices to Array Architectures (Synthesis Lectures on Emerging Engineering Technologies). 2016, pp. 1-79.
    [11] M.-K. Song, J.-H. Kang, X. Zhang, W. Ji, A. Ascoli, I. Messaris, A. S. Demirkol, B. Dong, S. Aggarwal, W. Wan, S.-M. Hong, S. G. Cardwell, I. Boybat, J.-s. Seo, J.-S. Lee, M. Lanza, H. Yeon, M. Onen, J. Li, B. Yildiz, J. A. del Alamo, S. Kim, S. Choi, G. Milano, C. Ricciardi, L. Alff, Y. Chai, Z. Wang, H. Bhaskaran, M. C. Hersam, D. Strukov, H. S. P. Wong, I. Valov, B. Gao, H. Wu, R. Tetzlaff, A. Sebastian, W. Lu, L. Chua, J. J. Yang, and J. Kim, "Recent Advances and Future Prospects for Memristive Materials, Devices, and Systems," ACS Nano, vol. 17, no. 13, pp. 11994-12039, 2023.
    [12] P. Lorenzi, R. Rao, G. Ghidini, F. Palma, and F. Irrera, "Charge Trapping Non Volatile Memory," ECS Transactions, vol. 25, no. 7, p. 269, 2009.
    [13] J. Y. Kim, J.-W. Lee, H. S. Jung, H. Shin, and N.-G. Park, "High-Efficiency Perovskite Solar Cells," Chemical Reviews, vol. 120, no. 15, pp. 7867-7918, 2020.
    [14] G. S. H. Thien, M. Ab Rahman, B. K. Yap, N. M. L. Tan, Z. He, P.-L. Low, N. K. Devaraj, A. F. Ahmad Osman, Y.-K. Sin, and K.-Y. Chan, "Recent Advances in Halide Perovskite Resistive Switching Memory Devices: A Transformation from Lead-Based to Lead-Free Perovskites," ACS Omega, vol. 7, no. 44, pp. 39472-39481, 2022.
    [15] S. Aritome, NAND flash memory technologies. 2015, pp. 1-410.
    [16] P. Dimitrakis, Charge-trapping non-volatile memories. 2017, pp. 1-211.
    [17] Yole Group. "NAND and DRAM are poised to hit new revenue records." Yole Group. https://reurl.cc/9vZL3j (accessed April 21, 2024).
    [18] A. Makarov, "Modeling of Emerging Resistive Switching Based Memory Cells," 2014.
    [19] R. Jeyasingh, J. Liang, M. A. Caldwell, D. Kuzum, and H. S. P. Wong, "Phase Change Memory: Scaling and applications," in Proceedings of the IEEE 2012 Custom Integrated Circuits Conference, 2012, pp. 1-7.
    [20] H. S. P. Wong, H. Y. Lee, S. Yu, Y. S. Chen, Y. Wu, P. S. Chen, B. Lee, F. T. Chen, and M. J. Tsai, "Metal–Oxide RRAM," Proceedings of the IEEE, vol. 100, no. 6, pp. 1951-1970, 2012.
    [21] I. Valov, R. Waser, J. R. Jameson, and M. N. Kozicki, "Electrochemical metallization memories—fundamentals, applications, prospects," Nanotechnology, vol. 22, no. 25, p. 254003, 2011.
    [22] A. Chen, "Comprehensive assessment of RRAM-based PUF for hardware security applications," in 2015 IEEE International Electron Devices Meeting (IEDM), 2015, pp. 10.7.1-10.7.4.
    [23] H.-J. Kim, D.-S. Woo, S.-M. Jin, H.-J. Kwon, K.-H. Kwon, D.-W. Kim, D.-H. Park, D.-E. Kim, H.-U. Jin, H.-D. Choi, T.-H. Shim, and J.-G. Park, "Super-Linear-Threshold-Switching Selector with Multiple Jar-Shaped Cu-Filaments in the Amorphous Ge3Se7 Resistive Switching Layer in a Cross-Point Synaptic Memristor Array," Advanced Materials, vol. 34, no. 40, p. 2203643, 2022.
    [24] F. Zahoor, T. Z. Azni Zulkifli, and F. A. Khanday, "Resistive Random Access Memory (RRAM): an Overview of Materials, Switching Mechanism, Performance, Multilevel Cell (mlc) Storage, Modeling, and Applications," Nanoscale Research Letters, vol. 15, no. 1, p. 90, 2020.
    [25] H. Wang and X. Yan, "Overview of Resistive Random Access Memory (RRAM): Materials, Filament Mechanisms, Performance Optimization, and Prospects," physica status solidi (RRL) – Rapid Research Letters, vol. 13, no. 9, p. 1900073, 2019.
    [26] M. M. Rehman, H. M. M. U. Rehman, J. Z. Gul, W. Y. Kim, K. S. Karimov, and N. Ahmed, "Decade of 2D-materials-based RRAM devices: a review," Science and Technology of Advanced Materials, vol. 21, no. 1, pp. 147-186, 2020.
    [27] F.-C. Chiu, "A Review on Conduction Mechanisms in Dielectric Films," Advances in Materials Science and Engineering, vol. 2014, p. 578168, 2014.
    [28] E. W. Lim and R. Ismail, "Conduction Mechanism of Valence Change Resistive Switching Memory: A Survey," Electronics, vol. 4, no. 3, pp. 586-613, 2015.
    [29] N. Arul and V. Nithya, Revolution of Perovskite Synthesis, Properties and Applications: Synthesis, Properties and Applications. 2020, pp. 1-320.
    [30] W.-J. Yin, J.-H. Yang, J. Kang, Y. Yan, and S.-H. Wei, "Halide perovskite materials for solar cells: a theoretical review," Journal of Materials Chemistry A, vol. 3, no. 17, pp. 8926-8942, 2015.
    [31] A. K. Jena, A. Kulkarni, and T. Miyasaka, "Halide Perovskite Photovoltaics: Background, Status, and Future Prospects," Chemical Reviews, vol. 119, no. 5, pp. 3036-3103, 2019.
    [32] S. Liu, V. P. Biju, Y. Qi, W. Chen, and Z. Liu, "Recent progress in the development of high-efficiency inverted perovskite solar cells," NPG Asia Materials, vol. 15, no. 1, p. 27, 2023.
    [33] G. National Renewable Energy Laboratory, CO. "Best Research-Cell Efficiency Chart." National Renewable Energy Laboratory, Golden, CO. https://pse.is/5vfm26 (accessed April 27, 2024).
    [34] M. Anaya, G. Lozano, M. E. Calvo, and H. Míguez, "ABX3 Perovskites for Tandem Solar Cells," Joule, vol. 1, no. 4, pp. 769-793, 2017.
    [35] B. Wang, X. Xiao, and T. Chen, "Perovskite photovoltaics: a high-efficiency newcomer to the solar cell family," Nanoscale, vol. 6, no. 21, pp. 12287-12297, 2014.
    [36] F. Temerov, Y. Baghdadi, E. Rattner, and S. Eslava, "A Review on Halide Perovskite-Based Photocatalysts: Key Factors and Challenges," ACS Applied Energy Materials, vol. 5, no. 12, pp. 14605-14637, 2022.
    [37] J. Wang, J. Zhang, Y. Zhou, H. Liu, Q. Xue, X. Li, C.-C. Chueh, H.-L. Yip, Z. Zhu, and A. K. Y. Jen, "Highly efficient all-inorganic perovskite solar cells with suppressed non-radiative recombination by a Lewis base," Nature Communications, vol. 11, no. 1, p. 177, 2020.
    [38] L. Wang, B. Fan, B. Zheng, Z. Yang, P. Yin, and L. Huo, "Organic functional materials: recent advances in all-inorganic perovskite solar cells," Sustainable Energy & Fuels, vol. 4, no. 5, pp. 2134-2148, 2020.
    [39] W. Xiang and W. Tress, "Review on Recent Progress of All-Inorganic Metal Halide Perovskites and Solar Cells," Advanced Materials, vol. 31, no. 44, p. 1902851, 2019.
    [40] S.-y. Yuan, H. Zhao, Y.-t. Wang, Z.-z. Li, X.-d. Wang, and W.-p. Cao, "Research status of all-inorganic perovskite solar cells: A review," Journal of Solid State Chemistry, vol. 328, p. 124299, 2023.
    [41] W. Xiang, S. Liu, and W. Tress, "A review on the stability of inorganic metal halide perovskites: challenges and opportunities for stable solar cells," Energy & Environmental Science, vol. 14, no. 4, pp. 2090-2113, 2021.
    [42] I. M. Maafa, "All-Inorganic Perovskite Solar Cells: Recent Advancements and Challenges," Nanomaterials, vol. 12, no. 10, p. 1651, 2022.
    [43] Z. Zhang, Y. Liu, Q. Sun, H. Ban, Z. Liu, H. Yu, X. Li, L. Dai, W. Yang, Y. Shen, and M. Wang, "The importance of elemental lead to perovskites photovoltaics," Chemistry of Inorganic Materials, vol. 1, p. 100017, 2023.
    [44] B. A. Rosales, M. P. Hanrahan, B. W. Boote, A. J. Rossini, E. A. Smith, and J. Vela, "Lead Halide Perovskites: Challenges and Opportunities in Advanced Synthesis and Spectroscopy," ACS Energy Letters, vol. 2, no. 4, pp. 906-914, 2017.
    [45] J. Li, H.-L. Cao, W.-B. Jiao, Q. Wang, M. Wei, I. Cantone, J. Lü, and A. Abate, "Biological impact of lead from halide perovskites reveals the risk of introducing a safe threshold," Nature Communications, vol. 11, no. 1, p. 310, 2020.
    [46] S.-Y. Kim, J.-M. Yang, S.-H. Lee, and N.-G. Park, "A layered (n-C4H9NH3)2CsAgBiBr7 perovskite for bipolar resistive switching memory with a high ON/OFF ratio," Nanoscale, vol. 13, no. 29, pp. 12475-12483, 2021.
    [47] M. N. T. D. Core Facility Center. "Scanning probe microscopes, SPMs." Core Facility Center, Micro/Nano Technology Division. https://reurl.cc/YEvmDL (accessed April 30, 2024).
    [48] I. D. Core Facility Center. "High Temperature 2D X-ray Diffractometer." Core Facility Center, Instrument Division. https://reurl.cc/z1Zoz0 (accessed April 30, 2024).
    [49] I. D. Core Facility Center. "X-Ray Photoelectron Spectrometer." Core Facility Center, Instrument Division. https://reurl.cc/4r1qyv (accessed April 30, 2024).
    [50] M. N. T. D. Core Facility Center. "Advanced Focused Ion Beam System." Core Facility Center, Micro/Nano Technology Division. https://reurl.cc/LWmeGy (accessed April 30, 2024).
    [51] I. D. Core Facility Center. "High Resolution Scanning Electron Microscope." Core Facility Center, Instrument Division. https://reurl.cc/jW1aML (accessed April 30, 2024).
    [52] I. D. Core Facility Center. "Ultrahigh Resolution Transmission Electron Microscope." Core Facility Center, Instrument Division. https://reurl.cc/WxrydO (accessed April 30, 2024).
    [53] M. N. Tran, I. J. Cleveland, and E. S. Aydil, "Resolving the discrepancies in the reported optical absorption of low-dimensional non-toxic perovskites, Cs3Bi2Br9 and Cs3BiBr6," Journal of Materials Chemistry C, vol. 8, no. 30, pp. 10456-10463, 2020.
    [54] I. Alam, R. Mollick, and M. Ashraf, "Numerical simulation of Cs2AgBiBr6-based perovskite solar cell with ZnO nanorod and P3HT as the charge transport layers," Physica B: Condensed Matter, vol. 618, no. 1, p. 413187, 2020.
    [55] M. Shi, G. Li, W. Tian, S. Jin, X. Tao, Y. Jiang, E. A. Pidko, R. Li, and C. Li, "Understanding the Effect of Crystalline Structural Transformation for Lead-Free Inorganic Halide Perovskites," Advanced Materials, vol. 32, no. 31, p. 2002137, 2020.
    [56] Q. Fan, S. Wei, J. Ma, W. Zhang, and L. Wen, "Water-driven boost in the visible light photocatalytic performance of Cs2AgBiBr6 double perovskite nanocrystals," Journal of Materials Chemistry A, vol. 10, no. 28, pp. 14923-14932, 2022.
    [57] E. J. Juarez-Perez, R. S. Sanchez, L. Badia, G. Garcia-Belmonte, Y. S. Kang, I. Mora-Sero, and J. Bisquert, "Photoinduced Giant Dielectric Constant in Lead Halide Perovskite Solar Cells," The Journal of Physical Chemistry Letters, vol. 5, no. 13, pp. 2390-2394, 2014.
    [58] S. Bagdzevicius, K. Maas, M. Boudard, and M. Burriel, "Interface-type resistive switching in perovskite materials," Journal of Electroceramics, vol. 39, pp. 1-28, 2017.
    [59] S.-R. Zhang, L. Zhou, J.-Y. Mao, Y. Ren, J.-Q. Yang, G.-H. Yang, X. Zhu, S.-T. Han, V. A. L. Roy, and Y. Zhou, "Artificial Synapse Emulated by Charge Trapping-Based Resistive Switching Device," Advanced Materials Technologies, vol. 4, no. 2, p. 1800342, 2019.
    [60] L. Schade, A. D. Wright, R. D. Johnson, M. Dollmann, B. Wenger, P. K. Nayak, D. Prabhakaran, L. M. Herz, R. Nicholas, H. J. Snaith, and P. G. Radaelli, "Structural and Optical Properties of Cs2AgBiBr6 Double Perovskite," ACS Energy Letters, vol. 4, no. 1, pp. 299-305, 2019.
    [61] H. Lei, D. Hardy, and F. Gao, "Lead-Free Double Perovskite Cs2AgBiBr6: Fundamentals, Applications, and Perspectives," Advanced Functional Materials, vol. 31, no. 49, p. 2105898, 2021.
    [62] R. L. Z. Hoye, L. Eyre, F. Wei, F. Brivio, A. Sadhanala, S. Sun, W. Li, K. H. L. Zhang, J. L. MacManus-Driscoll, P. D. Bristowe, R. H. Friend, A. K. Cheetham, and F. Deschler, "Fundamental Carrier Lifetime Exceeding 1 µs in Cs2AgBiBr6 Double Perovskite," Advanced Materials Interfaces, vol. 5, no. 15, p. 1800464, 2018.
    [63] K. Oura, V. Lifshits, A. Saranin, A. Zotov, M. Katayama, and J. Yates, Surface Science: An Introduction (Physics Today). 2004, pp. 1-443.
    [64] C. C. Yann LeCun, Christopher J.C. Burges,. "The MNIST Database of handwritten digits." https://reurl.cc/8vjez4 (accessed May 9, 2024).

    無法下載圖示 校內:2029-07-10公開
    校外:2029-07-10公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE