簡易檢索 / 詳目顯示

研究生: 楊尚宜
Yang, Shang-Yi
論文名稱: 於微流體系統中進行細胞圖形化及其在細胞趨電性觀察上的應用
Cell patterning in the microfluidic system and its application on electrotaxis observation
指導教授: 王翔郁
Wang, Hsiang-Yu
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 146
中文關鍵詞: 微流體纖維母細胞趨電性細胞圖形化
外文關鍵詞: microfluidic, fibroblast, electrotaxis, cell patterning
相關次數: 點閱:113下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微流體系統因其具有製程簡易、裝置成本低、所需樣品量少、電場控制精準、與細胞尺度相近等優點,為一適合進行細胞實驗之生物性檢測平台。本研究利用微流體裝置探討排列纖維母細胞(NIH-3T3)的方法,以及利用排列過後的細胞進行趨電性研究的可能性。因傳統趨電性實驗需針對單細胞做追蹤,相當耗費人力及時間,在進行趨電性實驗前將細胞排列為特定圖形,可免去單細胞追蹤的必要性。本研究嘗試兩種方式排列細胞:(1)以雙層微流道裝置組成的物理性可逆氣閥及;(2)交流介電泳力。前者可避免不均勻的表面性質於施加趨電性電場時引發擾流或是不均勻電場而影響細胞遷移,但在操作中容易因流體壓力過大而使得閥無法緊閉,因而無法將細胞排列在特定區域。而交流介電泳力於適當導電度、頻率和電場等操作條件下於細胞圖形化有相當顯著的成果,本研究測試不同電場值(100 V/cm ~ 400 V/cm)以及不同頻率下(100 kHz ~ 40 MHz)的細胞排列情形,找出最適合在本研究下排列細胞的電場與頻率為40 MHz、160 V/cm,細胞於此條件下可排列為40個細胞的小群體,且有高存活率。除此之外,傳統之趨電性實驗所使用之金屬電極若長時間直接接觸到細胞本體,容易造成細胞毒害的情形,亦對實驗造成某些程度上之限制,因此本研究利用洋菜膠及導電高分子聚二甲基二烯丙基氯化銨兩種材料分別製備鹽橋以阻隔金屬電極與細胞本體之接觸,確保細胞於實驗進行間之活性與狀態。在施加1 V/cm、2 V/cm直流電場下,利用2 %洋菜膠鹽橋作為傳導媒介之微流體裝置中纖維母細胞NIH-3T3表現出趨向負極的趨電性行為。NIH-3T3細胞的行為與文獻中報導結果吻合,並證實交流介電泳可用於排列細胞且不改變細胞活性。導電高分子鹽橋比起洋菜膠更易於微流道中製作,因此本研究選用此材料進一步縮小裝置整體體積,在高分子單體(Diallyldimethyl- ammonium chloride)、光起始劑(2-hydroxy-4'-(-hydroxyethoxy)-2-methyl- propiophenone)、交聯劑(N,N'-methylenebisacrylamide)的劑量比例為2 ml:1.4 g:1.4 g時,照射UV光20秒後可聚合固化鹽橋,但製備出的鹽橋在趨電性實驗中隨著時間而體積增加,因此無法提供穩定的電場。

    Microfluidc system is a good platform for biological studies. It has advantages of easy fabrication, small amout of sample required, precise control of electric field , and comparable dimension to biological micro-environment. This study focuses on the patterning of cells in the microfluidic device and its application on investigating the electrotaxis behavior of the fibroblast NIH-3T3 cells. Conventional electrotaxis experiment requires single-cell tracking along the experiment and it is a labor and time consuming process. Patterning cells into specific area or shape can simplify the observation of electrotaxis because the change of pattern can indicate the tendency of cell movement. A bilayer microfluidic device was first applied to pattern cells into particular regions by controlling a pneumatic valve. Without changing the chemistry or the topography of the surface, chaotic or enhanced hydrodynamic flow or electric field will not be introduced during electrotaxis experiment. However, the micro-valve was not robust enough to resist the hydrodynamic pressure introduced by cell flow. Therefore, we turned to alternating current dielectrophresis(ACDEP) to pattern cells to specific region and found that at 40 MHz,160 V/cm was optimal for cell patterning for high viability and suitable size of cell group. To avoid direct contact betwee metalic electrodes and cells, we applied two biocompatible materials:agar and diallyldimethylammonium chloride to fabricate the salt bridge and prevent the toxicity produced in electrolysis of medium. In electrotaxis experiments using agar salt bridge, the fibroblast NIH-3T3 cells moved to the cathode under 1 V/cm, 2 V/cm. These results agree with those in previous reports and validate that ACDEP was a suitable method for cell patterning. To make the size of the devices much smaller, salt bridge composed of 97.2 wt% diallyldimethylammonium chloride,1.4 wt% 2-hydroxy-4'-(2-hydroxyethoxy)-2-methylpropiophenone,and 1.4 wt% N,N'-methylenebisacrylamide was fabricated on-chip by exposing the mixture in microchannel under UV light for 20s. However, the salt bridge expanded during the electrotaxis experiment and failed to provide stable electric field to the cells.

    摘要 I Abstract III 致謝 V 目錄 VI 表目錄 IX 圖目錄 X 第一章 緒論 1 1-1 前言 1 1-2 研究動機 2 第二章 文獻回顧 3 2-1 細胞遷移 (cell migration) 3 2-2 細胞趨電性 (electrotaxis/galvanotaxis) 5 2-2-1 趨電性與傷口癒合的相關性 7 2-2-2 趨電性相關訊息傳導過程 10 2-3 細胞圖形化 (cell patterning) 13 2-3-1 光微影 (photo-lithography) 14 2-3-2 軟微影 (soft-lithography) 16 2-3-3 模板輔助圖形化 (stencil-assisted patterning) 19 2-3-4 噴墨印刷技術 (inkjets printing techniques) 19 2-3-5 交流介電泳 (alternating current dielectrophoresis,ACDEP) 21 2-4 微流體系統中之趨電性研究 26 第三章 實驗材料與方法 29 3-1 實驗材料 29 3-1-1 黃光微影製程 29 3-1-2 裝置製造與操作 31 3-1-3 鹽橋製作 33 3-1-4 細胞培養 34 3-1-5 趨電性實驗 37 3-2 實驗藥品 38 3-2-1 黃光微影製程 38 3-2-2 微流體裝置製造 41 3-2-3 洋菜膠鹽橋製備 42 3-2-4 導電高分子鹽橋製備 43 3-2-5 細胞培養 44 3-3 實驗儀器 47 3-3-1 黃光微影製程 47 3-3-2 微流道製造 48 3-3-3 洋菜膠鹽橋製備 49 3-3-4 導電高分子鹽橋製備 50 3-3-5 細胞排列 (利用交流介電泳力) 54 3-3-6 細胞培養 55 3-4 實驗方法 57 3-4-1 光罩圖形設計 57 3-4-2 矽晶圓圖形化 58 3-4-3 微流道裝置製作 63 3-4-4 鹽橋製備 66 3-4-5 細胞培養 70 3-4-6 細胞排列 74 3-4-7 細胞趨電性 77 第四章 結果與討論 80 4-1 細胞排列 80 4-1-1 利用可逆性氣閥作細胞排列 80 4-1-2 利用交流介電泳力作細胞排列 83 4-2 細胞趨電性實驗 110 4-2-1 洋菜膠鹽橋製作 110 4-2-2 利用洋菜膠鹽橋進行細胞趨電性實驗 113 4-2-3 導電高分子鹽橋 127 4-2-4 利用導電高分子鹽橋進行細胞趨電性實驗 136 第五章 結論及未來展望 138 5-1 結論 138 5-2 未來展望 139 第六章 參考文獻 140

    [1] Ridley, Anne J., et al. "Cell migration: integrating signals from front to back." Science 302.5651 (2003): 1704-1709.
    [2] Alberts, Bruce, et al. "The Cytoskeleton and Cell Behavior." (2002).
    [3] Lodish, Harvey, et al. "Transport across cell membranes." (2000).
    [4] Erickson, Carol A., and Richard Nuccitelli. "Embryonic fibroblast motility and orientation can be influenced by physiological electric fields." The Journal of cell biology 98.1 (1984): 296-307.
    [5] Brown, Martin J., and Leslie M. Loew. "Electric field-directed fibroblast locomotion involves cell surface molecular reorganization and is calcium independent." The Journal of cell biology 127.1 (1994): 117-128.
    [6] Yang, Wei-Ping, Edward K. Onuma, and Sek-Wen Hui. "Response of
    C3H/10T1/2 fibroblasts to an external steady electric field stimulation:
    Reorientation, shape change, conA receptor and intramembranous particle
    distribution and cytoskeleton reorganization." Experimental cell research
    155.1 (1984): 92-104.
    [7] Rapp, B., A. de Boisfleury-Chevance, and H. Gruler. "Galvanotaxis of human granulocytes." European Biophysics Journal 16.5 (1988): 313-319.
    [8] Giaever, Ivar, and Charles R. Keese. "Monitoring fibroblast behavior in tissue culture with an applied electric field." Proceedings of the National Academy of Sciences 81.12 (1984): 3761-3764.
    [9] Tiruppathi, Chinnaswamy, et al. "Electrical method for detection of endothelial cell shape change in real time: assessment of endothelial barrier function." Proceedings of the National Academy of Sciences 89.17 (1992): 7919-7923.
    [10] Zhao, Min, et al. "Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-γ and PTEN." Nature 442.7101 (2006): 457-460
    [11] Chiang, Meicheng, Kenneth R. Robinson, and Joseph W. Vanable. "Electrical fields in the vicinity of epithelial wounds in the isolated bovine eye." Experimental eye research 54.6 (1992): 999-1003.
    [12] Barker, A. T., L. F. Jaffe, and J. W. Vanable. "The glabrous epidermis of cavies contains a powerful battery." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 242.3 (1982): R358-R366.
    [13] Illingworth, Cynthia M., and A. T. Barker. "Measurement of electrical currents emerging during the regeneration of amputated finger tips in children." Clinical Physics and Physiological Measurement 1.1 (1980): 87.
    [14] Zhao, Min. "Electrical fields in wound healing—an overriding signal that directs cell migration." Seminars in cell & developmental biology. Vol. 20. No. 6. Academic Press, 2009.
    [15] Zhao, Min, et al. "Electric field–directed cell motility involves up-regulated expression and asymmetric redistribution of the epidermal growth factor receptors and is enhanced by fibronectin and laminin." Molecular biology of the cell 10.4 (1999): 1259-1276.
    [16] Fang, Kathy S., et al. "Epidermal growth factor receptor relocalization and kinase activity are necessary for directional migration of keratinocytes in DC electric fields." Journal of Cell Science 112.12 (1999): 1967-1978.
    [17] Zhao, Min, et al. "Membrane lipids, EGF receptors, and intracellular signals
    colocalize and are polarized in epithelial cells moving directionally in a physiological electric field." The FASEB Journal 16.8 (2002): 857-859.
    [18] Goubko, Catherine A., and Xudong Cao. "Patterning multiple cell types in co-cultures: a review." Materials Science and Engineering: C 29.6 (2009): 1855-1868.
    [19] Kleinfeld, D., K. H. Kahler, and P. E. Hockberger. "Controlled outgrowth of dissociated neurons on patterned substrates." The Journal of neuroscience 8.11 (1988): 4098-4120.
    [20] Britland, Stephen, et al. "Micropatterned substratum adhesiveness: a model for morphogenetic cues controlling cell behavior." Experimental cell research 198.1 (1992): 124-129.
    [21] Spargo, B. J., et al. "Spatially controlled adhesion, spreading, and differentiation of endothelial cells on self-assembled molecular monolayers." Proceedings of the National Academy of Sciences 91.23 (1994): 11070-11074.
    [22] Healy, Kevin E., et al. "Kinetics of bone cell organization and mineralization on materials with patterned surface chemistry." Biomaterials 17.2 (1996): 195-208.
    [23] Xia, Younan, and George M. Whitesides. "Soft lithography." Annual review of materials science 28.1 (1998): 153-184.
    [24] Singhvi, Rahul, et al. "Engineering cell shape and function." Science 264.5159 (1994): 696-698.
    [25] Liu, Wendy F., and Christopher S. Chen. "Engineering biomaterials to control cell function." Materials Today 8.12 (2005): 28-35.
    [26] Lahann, Jörg, et al. "A new method toward microengineered surfaces based on reactive coating." Angewandte Chemie International Edition 40.17 (2001): 3166-3169.
    [27] Csucs, Gabor, et al. "Microcontact printing of novel co-polymers in combination with proteins for cell-biological applications." Biomaterials 24.10 (2003): 1713-1720.
    [28] Tan, John L., et al. "Simple approach to micropattern cells on common culture substrates by tuning substrate wettability." Tissue engineering 10.5-6 (2004): 865-872.
    [29] Delamarche, Emmanuel, et al. "Patterned delivery of immunoglobulins to surfaces using microfluidic networks." Science 276.5313 (1997): 779-781.
    [30] Patel, Nikin, et al. "Spatially controlled cell engineering on biodegradable polymer surfaces." The FASEB journal 12.14 (1998): 1447-1454.
    [31] Geissler, Matthias, et al. "Fabrication of metal nanowires using microcontact printing." Langmuir 19.15 (2003): 6301-6311.
    [32] Folch, Albert, et al. "Microfabricated elastomeric stencils for micropatterning cell cultures." Journal of biomedical materials research 52.2 (2000): 346-353.
    [33] Klebe, Robert J. "Cytoscribing: a method for micropositioning cells and the construction of two-and three-dimensional synthetic tissues." Experimental cell research 179.2 (1988): 362-373.
    [34] Sanjana, Neville E., and Sawyer B. Fuller. "A fast flexible ink-jet printing method for patterning dissociated neurons in culture." Journal of neuroscience methods 136.2 (2004): 151-163. 
    [35] Wilson, W. Cris, and Thomas Boland. "Cell and organ printing 1: protein and cell printers." The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology 272.2 (2003): 491-496.
    [36] Boland, Thomas, et al. "Drop-on-demand printing of cells and materials for designer tissue constructs." Materials Science and Engineering: C 27.3 (2007): 372-376.
    [37] Radulescu, Delia, et al. "Tissue engineering scaffolds for nerve regeneration manufactured by ink-jet technology." Materials Science and Engineering: C 27.3 (2007): 534-539.
    [38] Sanjana, Neville E., and Sawyer B. Fuller. "A fast flexible ink-jet printing method for patterning dissociated neurons in culture." Journal of neuroscience methods 136.2 (2004): 151-163.
    [39] Green, N. G., H. Morgan, and Joel J. Milner. "Manipulation and trapping of sub-micron bioparticles using dielectrophoresis." Journal of biochemical and biophysical methods 35.2 (1997): 89-102.
    [40] Choi, Sungyoung, and Je-Kyun Park. "Microfluidic system for dielectrophoretic separation based on a trapezoidal electrode array." Lab on a Chip 5.10 (2005): 1161-1167.
    [41] Nieuwenhuis, Jeroen H., et al. "Optimization of microfluidic particle sorters based on dielectrophoresis." Sensors Journal, IEEE 5.5 (2005): 810-816.
    [42] Gascoyne, Peter RC, and Jody V. Vykoukal. "Dielectrophoresis-based sample handling in general-purpose programmable diagnostic instruments." Proceedings of the IEEE 92.1 (2004): 22-42. 
    [43] Lenshof, Andreas, and Thomas Laurell. "Continuous separation of cells and particles in microfluidic systems." Chemical Society Reviews 39.3 (2010): 1203-1217.
    [44] Jones, Thomas B. "Basic theory of dielectrophoresis and electrorotation." Engineering in Medicine and Biology Magazine, IEEE 22.6 (2003): 33-42.
    [45] Yin, Zhizhong, et al. "Analysis of pairwise cell interactions using an integrated dielectrophoretic-microfluidic system." Molecular systems biology 4.1 (2008).
    [46] Ho, Chen-Ta, et al. "Rapid heterogeneous liver-cell on-chip patterning via the enhanced field-induced dielectrophoresis trap." Lab on a Chip 6.6 (2006): 724-734.
    [47] Djamgoz, Mustafa BA, et al. "Directional movement of rat prostate cancer cells in direct-current electric field involvement of voltagegated Na+ channel activity." Journal of cell science 114.14 (2001): 2697-2705.
    [48] Sato, Masayuki J., et al. "Input–output relationship in galvanotactic response of Dictyostelium cells." Biosystems 88.3 (2007): 261-272.
    [49] Lin, Francis, et al. "Lymphocyte electrotaxis in vitro and in vivo." The Journal of Immunology 181.4 (2008): 2465-2471.
    [50] Huang, Ching-Wen, et al. "Gene Expression of Human Lung Cancer Cell Line CL1–5 in Response to a Direct Current Electric Field." PloS one 6.10 (2011): e25928.
    [51] Minc, Nicolas, and Fred Chang. "Electrical Control of Cell Polarization in the Fission Yeast Schizosaccharomyces pombe " Current Biology 20.8 (2010): 710-716.
    [52] Rezai, Pouya, et al. "Electrotaxis of Caenorhabditis elegans in a microfluidic environment." Lab on a Chip 10.2 (2010): 220-226. 
    [53] Li, Jing, and Francis Lin. "Microfluidic devices for studying chemotaxis and electrotaxis." Trends in cell biology 21.8 (2011): 489-497.
    [54] Huang, Ching-Wen, et al. "Electrotaxis of lung cancer cells in a multiple-electric-field chip." Biosensors and Bioelectronics 24.12 (2009): 3510-3516.
    [55] Erickson, Carol A., and Richard Nuccitelli. "Embryonic fibroblast motility and orientation can be influenced by physiological electric fields." The Journal of cell biology 98.1 (1984): 296-307.
    [56] Wang, Chun-Chieh, et al. "Asymmetric cancer-cell filopodium growth induced by electric-fields in a microfluidic culture chip." Lab Chip 11.4 (2011): 695-699.
    [57] Chun, Honggu, Taek Dong Chung, and Hee Chan Kim. "Cytometry and velocimetry on a microfluidic chip using polyelectrolytic salt bridges." Analytical chemistry 77.8 (2005): 2490-2495.
    [58] Chun, Honggu, Hee Chan Kim, and Taek Dong Chung. "Ultrafast active mixer using polyelectrolytic ion extractor." Lab on a Chip 8.5 (2008): 764-771.
    [59] Rols, Marie Pierre, and Justin TeissiE. "Modulation of electrically induced permeabilization and fusion of Chinese hamster ovary cells by osmotic pressure." Biochemistry 29.19 (1990): 4561-4567.
    [60] Wang, Hsiang‐Yu, and Chang Lu. "High‐throughput and real‐time
    study of single cell electroporation using microfluidics: Effects of medium
    osmolarity." Biotechnology and bioengineering 95.6 (2006): 1116-1125.

    無法下載圖示 校內:2024-01-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE