| 研究生: |
翁啟照 Wong, Ci-jhao |
|---|---|
| 論文名稱: |
無元素葛勒金法在二維彈力之應用 Element-Free Galerkin Method for the Analysis of 2D Elasticity |
| 指導教授: |
王永明
Wang, Yung-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 葛勒金 、微分再生核 、高斯積分 |
| 外文關鍵詞: | Galerkin, Differential Reproducing Kernel Approximation |
| 相關次數: | 點閱:58 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要利用無元素法(meshfree methods),配合微分再生核近似法
(differential reproducing kernel approximation method,DRKAM)與微分再生核內插法(differential reproducing kernel interpolation method ,DRKIM)。由建立各節點之再生核形狀函數(reproducing kernel shape functions)及其各階導數,代入葛勒金弱式(Galerkin weak formulation)求解二維彈力問題,藉此驗證此法之適用性及可行性。由於節點分佈方式不同,使得高斯積分點求解出的形狀函數也不盡相同,本文在求解含孔之無限板算例中,將節點分佈方式分為二次曲線佈點與均勻佈點,最後再探討其分佈方式不同所造成的精度上差異。
數值算例中求解承受單向軸力與剪力問題時,將同時以微分再生核中的近似法與內插法做分析,由數值結果可知使用內插法分析較近似法分析所得之結果來得穩定。
In this paper, based on meshfree methods coupled with differential reproducing kernel approximation method, (DRKAM) and differential reproducing kernel interpolation Method, (DRKIM). We established the reproducing kernel shape functions and its derivatives of each nodes and using Galerkin weak formulation solve the 2D elasticity problems.
Different distribution of nodes made different shape functions and affect the calculation precision. In solving the problem of a plate with circular hole, we use two different type of distribution of nodes to explores the effect of distribution of nodes on the precision of result.
In numerical examples, we study the problems of a cantilever beam subject to axis load and end shear load, analyses are made with DRKAM and DRKIM, compare the result of them. The results show that the DRKIM are more stable then DRKAM.
[1] L.B. Lucy : Anumerical approach to the testing of the fission hypothesis,The J. Astron. 8(12),1013-1024(1977).
[2] L. D. Libersky and A. G. Petschek : Smooth Particle Hydrodynamics with Strength of Materials, ed. H. E. Trease, M. J. Fritts, and W. P. Crowley (Springer Verlag), 248(1990).
[3] B. Nayroles, G. Touzot, and P. Villon: Generalizing the finite element method diffuse approximation and diffuse elements, Comput. Mech. 10, 307-318(1992).
[4] T. Belytschko, L. Gu, and Y. Y. Lu : Fracture and crack growth by element-free Galerkin methods, Model. Simul. Mater. Sci. Engrg. 2,519-534(1994).
[5] 盛若磐,”元素釋放法積分法則與權函數之改良”,近代工程計算論壇(2000)論文集,國立中央大學土木系,2000.
[6] W. K. Liu, S. Jun, and Y. F. Zhang: Reproducing kernel particle methods,Int. J. Number. Methods Engrg.20, 1081-1106(1995).
[7] J. S. Chen, C. T. Wu, and W. K. Liu : Reproducing Kernel Particle Methods for Large Deformation Analysis of non-linear structures, Computer
Methods in Applied Mechanics And Engineering. 139, 195-227.(1996).
[8] s. Li, W. Hao, and W. K. Liu : Numerical simulation of large deformation of thin shell structures using meshfree methods. Computational Mechanics 25,102-116(2000).
[9] E. Oñate, S. Idelsohn, O. C. Zienkiewicz, R. L. Taylor, and C. Sacco : AStabilized finite point method for analysis of fluid mechanics problems,Computer Methods in Applied Mechanics & Engineering,139,315-346(1996).
[10] T. Zhu, and S. N. Atluri : A Meshless Numberical Method Based on the local Boundary Integral Equation (LBIE) to Solve Linear and Non-linear Boundary Value Problems, Engineering Analysis with Boundary Elements,23, 357-389.(1999).
[11] T. Belytschko, Y. Krongauz, D. Orang, and N. Fleming: Meshless methods:An Overview and Recent Developments, Computer Methods in Applied Mechanics & Engineering, 139,
3-47(1996).
[12]吳振瑞,「元素釋放法之邊界處理」,碩士論文,國立中央大學土木工程研究所,民國八十八年六月。
[13]廖偉鈞,「無網格局部皮得洛夫葛勒金法」,碩士論文,國立中央大學機械工程研究所,民國九十五年七月。
[14]陳禎康,「微分再生核近似法於二維彈力之應用」,碩士論文,國立成功大學土木工程研究所,民國九十一年六月。