| 研究生: |
田光泰 Tian, Kuang-Tai |
|---|---|
| 論文名稱: |
超晶格薄膜LED理論模型與發光效率之研究 Super-Lattice Thin Film LED Modeling and Efficiency Enhancement Study |
| 指導教授: |
賴新一
Lai, Hsin-Yi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 158 |
| 中文關鍵詞: | 發光效率 、超晶格薄膜 |
| 外文關鍵詞: | superlattice thin film, luminescence efficiency |
| 相關次數: | 點閱:107 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前LEDs發光效率不佳,只有傳統照明設備的一半,近年來隨著奈米科技的蓬勃發展,將LEDs發光層以超晶格薄膜取代可有效提升發光效率,不過以往利用分子束磊晶法製造的超晶格薄膜卻有生產成本高昂與製造過程需不斷更換鈀材的缺點,而自組裝技術產生超晶格薄膜結構就顯得容易許多且成本低廉,此法是透過調控奈米微粒間不同作用勢能之強弱來獲得超晶格薄膜結構,若能有效掌握超晶格薄膜的缺陷特性則可望改善發光效率約25%,但是以往傳統模型對於預估獲得具有優良結晶性超晶格薄膜之製程參數仍力有未逮,因此,本研究將建構一套完整之超晶格薄膜成形理論與發光效率估算模型及其電腦模擬系統,以針對超晶格薄膜對提升發光效率相關課題進行研究探討。
首先,本研究以微觀的角度探討奈米微粒在液體中所受到的作用勢能,接著利用布朗動力之Langevin方程建構自組裝超晶格薄膜結構模擬系統,配合缺陷係數( )分析超晶格薄膜結構之聚集缺陷特性,並使用實驗設計方法進行模擬實驗,找出顯著參數因子及建構顯著參數因子之理論模型。同時利用發光效率估算模型,將奈米微粒視為點光源並計算超晶格薄膜內光波的耦合疊加效應,進而推估發光效率,並將本文模擬結果與文獻資料比對,證實本研究所建構之理論模型的正確性與可行性。隨即將模型電腦化,以系統化的方法執行顯著參數因子之調控模擬與估算發光效率,接著根據本文所建構之設計流程應用於提升發光二極體之發光效率,以驗證本研究之實用性。
由本研究所建構之超晶格薄膜成形理論模型,在模擬過程中除了考量以往傳統模型之漢馬克係數與表面電荷之外,並加入粒子濃度與偶極矩的影響,且經由實驗設計方法建立顯著參數因子及其交互作用之理論模型。除了發現上述參數對超晶格薄膜缺陷特性具有顯著影響之外,參數彼此間之交互作用對超晶格薄膜缺陷特性亦具有顯著影響。在與文獻資料比對後,發現本文理論模型在同質系統時可有效將發光效率平均估算誤差由27.54%降低至7.42%,異質系統亦可將誤差由34.16%降到5.36%,顯示本文理論可精確預估超晶格薄膜之發光效率。透過發光二極體內發光層之超晶格薄膜結構的設計規劃應用實例,使發光效率由12.33%提高到21.4%,證實本文可快速精確的找出最佳發光效率之超晶格薄膜結構與製程參數設定範圍。
In the past, the luminescence efficiency of light emitted devices (LEDs) doesn’t work as expected. By using superlattices can be enhanced the luminescence efficiency of LEDs. The principle thing while producing the superlattices film of active layer of LEDs was molecular beam epitaxy. The disadvantages include high manufacturing cost and targets have to be kept modifying. Furthermore, by using self-assembly technology to produce superlattices thin film it can lower the production costs effectively. This is the way through controlling the potential energy between particles to obtain the superlattices thin film. However, by controlling the defect property of superlattice thin film it can be expected to improve around 25%. This study intends to construct an intact theory and computer simulation method in an attempt to probe into the subject of enhancing the luminescence efficiency based on the development of a self-assembly nanoparticles superlattices film formation theory and a luminescence efficiency estimative model.
First, this research uses microcosmic way to confer the potential while nanoparticles are under the fluid. Then, we use the Langevin equation from Brownian dynamics approach to construct the simulation system to analyze crystal aggregation characteristics of superlattices film via defect factor reduction. Moreover, the simulations were executed through experimental design method. Then, the theoretical model was developed by significant factors. At the same time, by using the luminescence efficiency estimation model, the luminescence efficiency was estimated via calculating the light coupling effect on the superlattice thin film. The results obtained by using the present model were found agree well with experimental data in literature. After that, we can computerize the model using the systematized approach to execute the simulation and to estimate the luminescence efficiency. Finally, we can apply the design procedure which was designed meet the research goal of active layer properties of LEDs to prove the practicability of this research.
The model parameters include the surface charge, Hamaker number, dipole moment and particle concentration. It is found via an experimental design method that system parameters and their interaction are significantly affecting the defect property of superlattice thin film. The average estimation error of the luminescence efficiency is decreased from 27.54% to 7.42% in the same material system, and the average estimation error of the luminescence efficiency is decreased from 34.16% to 5.36% in different systems. Also, through the proposed model of superlattices film luminescence efficiency, plan for improving luminescence efficiency can be obtained as soon as possible under the condition of several different limitary combination of parameters. Through practical examples of the superlattices film, active layer on the electroluminescence devices show that the proposed approach can find the best range of composition and parameter accurately for enhancing luminescence efficiency. It improves the luminescence efficiency from 12.33% to 21.4% at the range setting of system parameters.
1. Adrew, R., 2001, Molecular Modeling : Principles and Applications, Prentice Hall.
2. Brus, L.E., 1984, “Electron-electron and Electron-hole Interactions in Small SemiconductorCrystallites: The Size Dependence of The Lowest Excited Electronic State,” Journal of Chemical Physics, Vol. 80, pp. 4403-4409.
3. Bourov, G.K., and Bhattacharya, A., 2003, “The Role of Geometric Constraints in Amphiphilic Self-Assembly: A Brownian Dynamics Study,” Journal of Chemical Physics, Vol. 119, pp. 9219-9225.
4. Borkovec, M., and Yu, W.L., 2002, “Distinguishing Heteroaggreg- ation from Homoaggregation in Mixed Binary Particle Suspensions by Multiangle Static and Dynamic Light Scattering,” J. Phys. Chem. B, Vol. 106, pp. 13106-13110.
5. Cassagneau, T. and Caruso, F., 2002, “Inverse Opals for Optical Affinity Biosensing,” Advanced Materials, Vol. 14, pp. 1629-1633
6. Christova, C.G., Velikov, K.P., Dullens, R.P., and Blaaderen, A.V., 2006, “Layer-by-Layer Growth of Binary Colloidal Crystals,” Science, Vol. 296, pp. 106-109.
7. Derjaguin, B.V., and Landau, L., 1941, “Acta Physicochim,” URSS, Vol. 44, pp. 633-639
8. Elena, V.S., Dmitri, V.T., and Kotov, A., 2006, “Structural Diversity in Binary Nanoparticle Superlattices,” Nature Letters, Vol. 439, pp. 55-59.
9. Feke, D.L., Prabhu, N.D., and Mann, J.A., 2001, “A Formulation of the Short-range Repulsion between Spherical Colloidal Particles,” The Journal of Physical Chemistry, Vol. 88, pp. 5735-5739.
10. Fujita, M., Nishikawa, H., Okubo, T., and Yamaguchi, Y., 2004, “Multiscale Simulation of Two-Dimensional Self-Oragnization of Nanoparticles in Liquid Film,” Japanese Journal of Applied Physics, Vol. 43, pp. 4434-4442.
11. Fransaer, J.L., and Penner, R.M., 2004, “Brownian Dynamics Simulation of the Growth of Metal Nanocrystal Ensembles on Electrode Surfaces from Solution. I. Instantaneous Nucleation and Diffusion-Controlled Growth,” J. Phys. Chem. B, Vol. 103, pp. 7643-7653.
12. Furusawa, K., and Velev, O.D., 1999, “Electrokinetic Behavior in Synthetic Process of Composite Particles,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 159, pp. 359-371.
13. Guihua, Z., and Tamar, S., 1995, “Implicit discretization schemes for Langevin dynamics,” Molecular Physics, Vol. 84, pp. 1077-1098.
14. Haile, J.M., 1992, Molecular Dynamics Simulation: Elementary Methods, John Wiley.
15. Jamois, C., Wehrspohn, R.B., Andreani, L.C., Hermann, C., Hess O., and Gosele U., 2003, “Silicon-based Two-dimensional Photonic Crystal Waveguides,” Photonics and Nanostructures Fundamentals and Applications, Vol. 1, pp. 1-13.
16. Jiang, P., Bertone, J.F., Hwang, K.S. and Colvin, V.L., 1999, “Single-Crystal Colloidal Multilayers of Controlled Thickness,” Chem. Mater., Vol. 11, pp. 2132-2140.
17. Lee, H., and Johnson, J.A., 2001, “Strain-engineered Self-assembled Semiconductor Quantum Dot Lattices,” Applied Physics Letters, Vol. 78, pp. 105-107.
18. Liu, J., and Luijten, E., 2000, “Stabilization of Colloidal Suspensions by Means of Highly Charged Nanoparticles,” Physical Review Letters, Vol. 93, pp. 1-4.
19. Leunissen, M.E., Christova, C.G., Hynninen, A.P., Royall, C.P., Campbell, A.I., Imhof, A., Dijkstra, M., Roij, R.V., and Blaaderen, A.V., 2005, “Ionic Colloidal Crystals of Oppositely Charged Particles,” Nature, Vol. 437, No. 8, pp.235-240.
20. Linse, B.P., 2005, “Structure and Phase Separation in Solutions of Like-Charged Colloidal Particles,” Phil. Trans. R. Soc. Lond., Vol. 359, pp. 853-866.
21. Markus, J., and Warren, T., 1997, “Crystal Structures of Monodisperse Colloidal Silica in Poly(methyl acrylate) Films,” Langmuir Vol. 13, pp. 3338-3344.
22. Mei, X., Blumin, M., Sun, M., and Ruda, H.E., 2002, “Highly-ordered GaAs/AlGaAs Quantum-dot Arrays on GaAs(001) Substrates Grown by Molecular-beam Epitaxy Using Nanochannel Alumina Masks,” Vol. 82, pp. 967-968.
23. Masuda, Y., Itoh, T., and Koumoto, K., 2005, “Self-Assembly Patterning of Silica Colloidal Crystals,” Langmuir, Vol. 21, pp. 4478-4481.
24. Nuesser, W., and Versmold, H., 1999, “Brownian Dynamics Simulation of Sedimented Colloidal Suspensions,” Molecular Physics, Vol. 96, pp. 893-903.
25. Norris, D.J., Bo, X.Z., Sturm, J.C., and Vlasov, Y.A., 2003, “On-chip Natural Assembly of Silicon Photonic Bandgap Crystals,” Nature, Vol. 414, pp. 289-293.
26. Petsev, D.N., Thomas, B.R., Yau, S.T., and Vekilov, P.G., 2000, “Interactions and Aggregation of Apoferritin Molecules in Solution: Effects of Added Electrolytes,” Biophysical Journal, Vol. 78, pp. 2060-2069.
27. Puertas, A.M., Barbero, A.F., and Nieves, F.J., 2004, “Internal Structure of Clusters from Charge Heteroaggregation,” Journal of Colloid and Interface Science, Vol. 274, pp. 346-348.
28. Puertas, A.M., Barbero, A.F., and Nieves, F.J., 1999, “Brownian Dynamics Simulation of Diffusive Mesoscopic Particle Aggregation,” Computer Physics Communications, Vol. 121-122, pp. 353-357.
29. Puertas, A.M., Maroto, J.A., Barbero, A.F., and Nieves, F.J., 1999, “On the Kinetics of Heteroaggregation versus Electrolyte Concentration: Comparison Between Simulation and Experiment,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 151, pp. 473-481.
30. Rasa, F.X., Cho, K.S., Murray, C.B., and Brien, S.O., 2003, “Three-dimensional Binary Superlattices of Magnetic Nanocrystals and Semiconductor Quantum Dots,” Nature, Vol. 423, pp. 968-971.
31. Rabideau, B., and Bonnecaze, R., 2004, “Computational Study of the Self-Organization of Bidisperse Nanoparticles,” Langmuir, Vol. 20, pp. 9408-9414.
32. Rengarajan, R., and Mittleman, D., 2005, “Effect of Disorder on the Optical Properties of Colloidal Crystals,” Physical Review E, Vol. 71, pp. 1-11.
33. Springholz, G., Holy, V., Pinczolits, M., and Bauer, G., 1998, “Self-Organized Growth of three-Dimensional Quantum-Dot Crystals with fcc-Like Stacking and a Tunable Lattice Constant,” Science, Vol. 282, pp. 734-747.
34. Trifonov, A.S., and Miki, K., 2004, “Nanoscale Organic Electroluminescence from Tunnel Junction,” Physical Review B, Vol. 70, pp. 233204-1-233204-4.
35. Vargas, J.M., Socolovsky, L.M., and Knobel, M., 2005, “Dipolar Interaction and Size Effects in Powder Samples of Colloidal Iron Oxide Nanoparticles,” Institute of Physics Publishing Nanotechnology, Vol. 16, pp. S285-S290.
36. Yethiraj, A., and Blaaderen, A.V., 2003, “A Colloidal Model System with an Interaction Tunable From Hard Sphere to Soft and Dipolar," Vol. 421, pp. 98-104.
37. Zhang, Y.C., and Huang, C.J., 2001, “Thermal Redistribution of Photocarriers between Bimodal Quantum Dots,” Journal of Applied Physics, Vol. 90, pp. 1973-1976.
38. 張有義,1997,膠體及介面化學入門,高立圖書有限公司。
39. 洪連輝,2004,固態物理學導論,高立圖書有限公司。
40. 高濂,2005,奈米粉體的分散及表面改性,五南圖書出版股份有限公司。
41. 欒丕綱、陳啟昌,2005,光子晶體-從蝴蝶翅膀到奈米光子學,五南圖書出版股份有限公司。