| 研究生: |
劉慈薇 Liu, Tzu-Wei |
|---|---|
| 論文名稱: |
二氧化鈦光電極之製備及其在光電化學法產氫之應用 Preparation of TiO2 Photoanodes and Application in Hydrogen Generation via Photoelectrochemical Process |
| 指導教授: |
陳慧英
Chen, Huey-Ing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 153 |
| 中文關鍵詞: | 產氫製程 、光電極 、二氧化鈦 、光電化學 、陽極氧化法 、溶膠凝膠法 |
| 外文關鍵詞: | titanium dioxide, photoelectrochemical, photoanode, sol-gel, anodization, hydrogen generation process |
| 相關次數: | 點閱:103 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在製備二氧化鈦光電極,並以光電化學法(PEC)分解水之反應探討其光電化學反應活性及產氫速率。文中首先以正丁醇氧化鈦為前驅物,利用溶膠凝膠法製備TiO2/ITO光電極。文中探討TiO2氧化層塗覆厚度及鍛燒溫度對光電極表面形態、晶態及PEC反應活性之影響。實驗結果顯示,以溶凝膠法所製備之二氧化鈦薄膜,經400-650oC鍛燒後,所得晶態以銳鈦礦(anatase)結構為主。在照光(低壓汞燈,主要波長253.7 nm,極板平均照度1.59mW/cm2)下,以塗覆四層之TiO2膜(膜厚約250 nm)經600oC鍛燒所得電極之飽和光電流(0.1958 mA/cm2)為最大,其光電轉換效率為1.9%,顯示光催化活性並不顯著。
為了提昇光電極之光電活性,另以陽極氧化法製備奈米管狀結構之TiO2/Ti光電極。實驗中,改變陽極氧化法之操作變因,如施加電壓、電解液種類及濃度、反應溫度及時間、電解液攪拌速率等因素來製備TiO2 / Ti光電極,探討各條件下所得光電極特性,包括:表面形態、管徑大小及長度、氧化層厚度及晶態等影響,並推測TiO2奈米管生成機制。另外,對光電極之光催化活性進行測試,以探討電極在光電化學反應之活性。
實驗結果顯示,陽極氧化法所得TiO2 / Ti光電極之活性頗佳。其中,以H3PO4 (0.5 M)-HF (0.15 M)為電解液,在定電壓20 V下反應90 min後,經500oC鍛燒所得之奈米管狀二氧化鈦光陽極為最佳,其PEC反應之飽和光電流(0.4777 mA/cm2)為最大,且光電轉換效率高達15.1%,產氫速率為4.297 μmol/cm2hr。
進一步,嘗試含浸鉑於TiO2奈米管電極上以製備Pt-TiO2/Ti光電極,實驗發現含浸0.06 wt%鉑於二氧化鈦表面可減少電子-電洞再結合率,進而提高光電轉換效率(19.5%)及產氫速率(4.870 μmol/cm2hr);但鉑添加過量時,反而因遮蔽效應造成光電極活性之降低。
由本研究可知,陽極氧化法所得TiO2 / Ti光電極之光催化活性較溶膠凝膠法所得TiO2 / Ti光電極為佳;另外,含浸適量鉑於TiO2電極上對光催化轉化效率具有促進作用,顯示此法所得之光電極在水分解產氫上具備應用開發之潛力。
In this work, TiO2 photoanodes were prepared for hydrogen generation via photoelectrochemical (PEC) splitting of water. Experimentally, TiO2/ITO photoanodes were firstly prepared by the sol-gel method starting from tetrabutyl orthotitanate (Ti(OBun)4) as the precursor. The effects of preparation conditions including number of coating and calcination temperature on the properties of TiO2/ITO electrodes such as surface morphology, crystalline structure, and the PEC activities were investigated. The experimental results showed that the sol-gel derived TiO2 layers calcined at 400-650oC were mainly anatase structure. From results of PEC reactions under UV illumination (low pressure mercury lamp, λmax=253.7 nm, I0 = 1.59 mW/cm2), it found that the TiO2/ITO photoelectrode (calcined at 600oC, TiO2 layer thickness about 250 nm) demonstrated a maximum saturation current density (0.1958 mA/cm2) with the PEC conversion efficiency of 1.9%. It revealed the sol-gel derived TiO2/ITO electrode exhibited low photocatalytic activity.
In order to further promote the photocatalytic activity, alternatively, the nanotubular TiO2/Ti electrodes were prepared by the anodization method. Experimentally, the preparation conditions including applied voltage, nature, concentration of electrolyte, anodizing temperature and time, and stirring rate were varied. The properties of TiO2/Ti electrodes such as surface morphology, tube diameter and length, TiO2 layer thickness and crystalline structure were investigated. Based on the results, the formation mechanism of TiO2 nanotubues could be deduced. In addition, the usability of the nanotubular TiO2/Ti photoanodes was evaluated from the PEC tests.
The experimental results showed that the nanotubular TiO2/Ti photoanode prepared by anodization method exhibited great photoactivity. Among various electrodes, the nanotubular TiO2/Ti photoanode which was anodized in H3PO4(0.5 M)-HF(0.15 M) solution at 20 V for 90 min and followed by calcining at 500oC demonstrated the maximum saturation current density (0.4777 mA/cm2) with a high PEC conversion efficiency of 15.1%, and hydrogen generation rate of 4.297 μmol/cm2hr.
Furthermore, Pt-TiO2/Ti photoanodes were attempted to be prepared by impregnating Pt on the TiO2 nanotubes. The experimental results found that the Pt (0.06 wt%)-TiO2/Ti photoanodes exhibited the maximum enhancement on the photoconversion efficiency (19.5%) and hydrogen generation rate 4.870 μmol/cm2hr), due to diminishing the recombination rate of electron-hole pairs. However, overloading of Pt would lead to the decrease of photocatalytic activity owing to the shading effect.
From this study, it could be concluded that the photoelectrochemical activities of the nanotubular TiO2/Ti photoanodes by anodization method were greatly higher than those of sol-gel derived TiO2/ITO photoanodes. In addition, appropriately loading of Pt on the TiO2/Ti electrode would promote the photoconversion efficiency. As a result, the nanotubular TiO2/Ti photoanodes demonstrate great promising potentials for the application on hydrogen generation from water splitting.
[1] A. Fujishima, and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode”, Nature, 238, 37-39 (1972).
[2] H. Tributsch, “Photovoltaic strategies for hydrogen generation”, Chem. Ind., 53, 410-420 (1999).
[3] A. J. Bard, and M. A. Fox, “Artificial Photosynthesis: Solar splitting of water to hydrogen and oxygen”, Accounts Chem. Res., 28, 141-145 (1995).
[4] A. J. Nozik, and R. Memming, “Physical chemistry of semiconductor -liquid interface”, J. Phys. Chem., 100, 13061-13078 (1996).
[5] T. Bak, J. Nowotny, M. Rekas, and C. C. Sorrell, “Photoelectrochemical hydrogen generation from water using solar energy. Materials-related aspects”, Int. J. Hydrog. Energy, 27, 991-1022 (2002).
[6] M. Gratzel, “Photoelectrochemical cells”, Nature, 414, 338-344 (2001).
[7] S. S. Kocha, D. Montgomery, M. W. Peterson, and J. A. Turner, “Photoelectrochemical decomposition of water utilizing monolithic tandem cells”, Sol. Energy Mater. Sol. Cells, 52, 389-397 (1998).
[8] V. M. Aroutiounian, V. M. Arakelyan, and G. E. Shahnazaryan, “Metal oxide photoelectrodes for hydrogen generation using solar radiation-driven water splitting”, Sol. Energy, 78, 581-592 (2005).
[9] S. C. Moon, Y. Matsumura, M. Kitano, M. Matsuoka, and M. Anpo, “Hydrogen production using semiconducting oxide photocatalysts”, Res. Chem. Intermediate, 29, 233-256 (2003).
[10] A. Steinfeld, “Solar hydrogen production via a two-step water-splitting thermochemical cycle based on Zn/ZnO redox reactions”, Int. J. Hydrog. Energy, 27(6), 611-619 (2002).
[11] H. Ohya, M. Yatabe, M. Aihara, Y. Negishi, and T. Takeuchi, “Feasibility of hydrogen production above 2500K by direct thermal decomposition reaction in membrane reactor using solar energy”, Int. J. Hydrog. Energy, 27, 369-376 (2002).
[12] A. Kogan, “Direct solar thermal splitting of water and on-site separation of the products-IV. Development of porous ceramic membranes for a solar thermal water-splitting reactor”, Int. J. Hydrog. Energy, 25, 1043-1050 (2000).
[13] P. Zhang, B. Yu, and J. Chen, “Study on the hydrogen production by thermochemical water splitting”, Progress in Chemistry, 17, 643-650 (2005).
[14] A. J. Appleby, “Efficiencies of electrolytic and thermochemical hydrogen production”, Nature, 253, 257-258 (1975).
[15] T. Kodama, Y. Kondoh, R. Yamamoto, H. Andou, and N. Satou, “Thermochemical hydrogen production by a redox system of ZrO2-supported Co(II)-ferrite”, Sol. Energy, 78, 623-631 (2005).
[16] S. U. M. Khan, M. A. Shahry, and W. B. Ingler Jr., “Efficient photochemical water splitting by a chemically modified n-TiO2”, Science, 297, 2243-2245 (2002).
[17] G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, “Enhanced photocleavage of water using titania nanotube arrays”, Nano Lett., 5, 191-195 (2005).
[18] H. Y. Ha, S. W. Nam, T. H. Lim, I. H. Oh, and S. A. Hong, “Properties of the TiO2 membranes prepared by CVD of titanium tetraisopropoxide”, J. Membrane Sci., 111, 81-92 (1996).
[19] G. K. Mor, and O. K. Varghese, “Fabrication of tapered, conical-shaped titania nanotubes”, J. Mater. Res., 18, 2588-2593 (2003).
[20] K. Shankar, G. K. Mor, H. E. Prakasam, S. Yoriya, M. Paulose, O. K. Varghese, and C. A. Grimes, “Highly-ordered TiO2 nanotube arrays up to 220 μm in length: use in water photoelectrolysis and dye-sensitized solar cells”, Nanotechnology, 18, 065707 (2007).
[21] A. Fujishima, and K. Kohayakawa, “Hydrogen production under sunlight with an electrochemical photocell”, J. Electrochem. Soc., 122, 1487-1489 (1975).
[22] G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, “Enhanced photocleavage of water using titania nanotube arrays”, Nano Lett., 5, 191-195 (2005).
[23] A. J. Nozik, “Photoelectrolysis of water using semiconducting TiO2 crystals” Nature, 257, 383-385 (1975).
[24] X. Quan, S. G. Yang, X. L. Ruan, and H. Zhao, “Preparation of titania nanotubes and their environmental applications as electrode”, Environ. Sci. Technol. 39, 3770-3775 (2005).
[25] T. Bak, J. Nowotny, M. Rekas, and C. C. Sorrell, “Photo-electrochemical properties of the TiO2-Pt system in aqueous solutions”, Int. J. Hydrog. Energy, 27, 19-26 (2002).
[26] O. N. Sruvastava, R. K. Karn, and M. Misra, “Semisonductor-septum photoelectrochemical solar cell for hydrogen production”, Int. J. Hydrog. Energy, 25, 495-503 (2000).
[27] J. Akikusa, and S. U. M. Khan, “Photoresponse and AC impedance characterization of n-TiO2 films during hydrogen and oxygen evolution reactions in an electrochemical cell”, Int. J. Hydrog. Energy, 22, 875-882 (1997).
[28] C. A. Grimes, “Synthesis and application of highly ordered arrays of TiO2 nanotybes”, J. Mater. Chem., 17, 1451-1457 (2007).
[29] A. Watcharenwong, W. Chanmanee, N. R. de Tacconi, C. R. Chenthamarakshan, P. Kajitvichyanukul, and K. Rajeshwar, “Self-organized TiO2 nanotube arrays by anodization of Ti substrate: effect of anodization time, voltage and medium composition on oxide morphology and photoelectrochemical response”, J. Mater. Res., 22, 3186-3195 (2007).
[30] S. K. Mohapatra, V. K. Mahajan, and M. Misra, “Double-side illuminated titania nanotubes for high volume hydrogen generation by water splitting”, Nanotechnology, 18, 445705 (2007).
[31] S. K. Mohapatra, M. Misra, V. K. Mahajan, and K. S. Raja, “Design of a highly efficient photoelectrolytic cell for hydrogen generation by water splitting: application of Tio2-xCx nanotubes as a photoanode and Pt/TiO2 nanotubes as a cathode”, J. Phys. Chem. C, 111, 8677-8685 (2007).
[32] Y. A. Shaban, and S. U. M. Khan, “Surface grooved visible light active carbon modified (CM)-n-TiO2 thin films for efficient photoelectrochemical splitting of water”, Chem. Phys., 339, 73-85 (2007).
[33] G. S. Hermann, Y. Gao, T. T. Tran, and J. Osterwalder, “X-ray photoelectron diffraction study of an anatase thin film: TiO2 (001)”, Surf. Sci., 447, 201-211 (2000).
[34] J. G. Mavroides, D. I. Tchernev, J. A. Kafalas, and D. F. Kolesar, “Photoelectrolysis of water in cell with TiO2 anodes”, Mater. Res. Bull., 10, 1023-1030 (1975).
[35] U. Diebold, “The surface science of titanium dioxide”, Surf. Sci. Rep., 48, 53-229 (2003).
[36] A. L. Linsebigler, G. Lu, and J. T. Yates, “Photocatalysis on TiO2 surface: principles, mechanisms, and selected results”, Chem. Rev., 95, 735-758 (1995).
[37] A. Hagfeldt, and M. Gratzel, “Light-induced redox reactions in nanocrystalline systems”, Chem. Rev., 95, 49-68 (1995).
[38] H. Gerischer, and A. Heller, “Photocatalytic oxidation of organic molecules at TiO2 particles by sunlight in aerated water”, J. Electrochem. Soc., 139, 113-118 (1992).
[39] R. R. Basca, and J. Kiwi, “Effect of rutile phase on the photocatalytic properties of nanocrystalline titania during the degradation of p-coumaric acid”, Appl. Catal. B-Environ., 16, 19 (1998).
[40] D. S. Muggli, and L. Ding, “Photocatalytic performance of sulfated TiO2 and Degussa P-25 TiO2 during oxidation of organics”, Appl. Catal. B-Environ., 32, 181 (2001).
[41] T. Ohno, K. Sarukawa, K. Tokieda, and M. Matsumura, “Morphology of a TiO2 Photocatalyst (Degussa, P-25) consisting of anatase and rutile crystalline phases”, J. Catal., 203, 82 (2001).
[42] R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, and A. Kitamura, “Light-induced amphiphilic surfaces”, Nature, 388, 431-432 (1997).
[43] Z. Zainal, N. Saravanan, and N. S. Fang, “Electrochemical assisted photodegradation of oxalate ions using sol-gel coated TiO2 on ITO glass”, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 111, 57-63 (2004).
[44] J. A. Byrne, A. Davidson, P. S. M. Dunlop, and B. R. Eggins, “Water treatment using nano-crystalline TiO2 electrodes”, J. Photochem. Photobiol. A-Chem., 148, 365-374 (2002).
[45] A. Blozkow, I. Csolleova, and V. Brezova, “Effect of light sources on the phenol degradation using Pt/TiO2 photocatalysts immobilized on glass fibres”, J. Photochem. Photobiol. A-Chem., 113, 251-256 (1998).
[46] J. A. Byrne, B. R. Eggins, N. M. D. Brown, B. McKinney, and M. Rouse, “Immobilisation of TiO2 powder for the treatment of polluted water”, Appl. Catal. B-Environ., 17, 25-36 (1998).
[47] G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, “Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells”, Nano Lett., 6, 215-218 (2006).
[48] M. Paulose, K. Shankar, O. K. Varghese, G. K. Mor, and C. A. Grimes, “Application of highly-ordered TiO2 nanotube arrays in heterojunction dye-sensitized solar cells”, J. Phys. D-Appl. Phys., 39, 2498-2503 (2006).
[49] G. K. Mor, O. K.Varghese, M. Paulose, K. G. Ong, and C. A. Grimes, “Fabrication of hydrogen sensors with transparent titanium oxide nanotube-array thin films as sensing elements”, Thin Solid Films, 496, 42-48 (2006).
[50] D. Mardare, M. Tasca, M. Delibas, and G. I. Rusu, “On the structural properties and optical transmittance of TiO2 sputtered thin films”, Appl. Surf. Sci., 156, 200-206 (2000).
[51] C. C. Lee, “Effect of thermal annealing on the optical properties and residual stress of TiO2 films produced by ion-assisted deposition”, Appl. Optics, 44, 2996-3000 (2005).
[52] T. Nishide, and F. Mizukami, “Effect of ligands on crystal structures and optical properties of TiO2 prepared by sol-gel processes”, Thin Solid Films, 353, 67-71 (1999).
[53] H. Lin, H. Kozuka, and T. Yoko, “Preparation of TiO2 films on self-assembled monolayers by sol-gel method”, Thin Solid Films, 315, 111-117 (1998).
[54] S. C. Kim, M. C. Heoa, S. H. Hahna, C. W. Lee, J. H. Joo, J. S. Kim, I. K. Yoo, and E. J. Kim, “Optical and photocatalytic properties of Pt-photodeposited sol-gel TiO2 thin films”, Mater. Lett., 59, 2059-2063 (2005).
[55] Z. F. Yuan, B. Li, J. L. Zhang, C. Xu, and J. J. Ke, “Synthesis of TiO2 thin film by a modified sol-gel method and properties of the prepared films for photocatalyst”, J. Sol-Gel Sci. Technol., 39, 249-253 (2006).
[56] G. S. Vicente, A. Morales, and M. T. Gutierrez, “Preparation and characterization of sol–gel TiO2 antireflective coatings for silicon”, Thin Solid Films, 391, 133-137 (2001).
[57] E. Halary, G. Benvenuti, F. Wagner, and P. Hoffmann, “Light induced chemical vapor deposition of titanium oxide thin films at room temperature”, Appl. Surf. Sci., 154-155, 146-151 (2000).
[58] K. L. Siefering, and G. L. Griffin, “Growth kinetics of CVD TiO2: Influence of carrier gas”, J. Electrochem. Soc., 137, 1206-1208 (1990).
[59] H. S. Kim, D. C. Gilmer, S. A. Campbell, and D. L. Polla, “Leakage current and electrical breakdown in metal-organic chemical vapor deposited TiO2 dielectrics on silicon substrates”, Appl. Phys. Lett., 69, 3860-3862 (1996).
[60] Y. Lei, L. D. Zhang, and J. C. Fan, “Fabrication, characterization and Raman study of TiO2 nanowire arrays prepared by anodic oxidative hydrolysis of TiCl3”, Chem. Phys. Lett., 338, 231-236 (2001).
[61] Q. Zhang, L. Gao, J. Sun, and S. Zheng, “Preparation of long TiO2 nanotubes from ultrafine rutile nanocrystals”, Chem. Lett., 226-227 (2002).
[62] S. Zhang, L. M. Peng, Q. Chen, G. H. Du, G. Dawson, and W. Z. Zhou, “Formation mechanism of H2Ti3O7 nanotubes”, Phys. Rev. Lett., 91, 256103 (2003).
[63] A. Thorne, A. Kruth, D. Tunstall, J. T. S. Irvine, and W. Z. Zhou, “Formation, structure, and stability of titanate nanotubes and their proton conductivity”, J. Phys. Chem. B, 109, 5439-5444 (2005).
[64] A. Jaroenworaluck, D. Regonini, C. R. Bowen, R. Stevens, and D. Allsopp, “Macro, micro and nanostructure of TiO2 anodised films prepared in a fluorine-containing electrolyte”, J. Mater. Sci., 42, 6729-6734 (2007).
[65] D. Gong, C. A. Grimes, and O. K. Varghese, “Titanium oxide nanotube arrays prepared by anodic oxidation”, J. Meter. Res., 16, 3331-3334 (2001).
[66] S. K. Mohapatra, M. Misra, V. K. Mahajan, and K. S. Raja, “A novel method for the synthesis of titania nanotubes using sonoelectrochemical method and its application for photoelectrochemical splitting of water”, J. Catal., 246, 362–369 (2007).
[67] J. M. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova, and P. Schmuki, “Smooth anodic TiO2 nanotubes”, Angew. Chem.-Int. Edit., 44, 7463-7465 (2005).
[68] Y. Xie, “Photoelectrochemical reactivity of polyoxophosphotungstates embedded in titania tubules”, Nanotechnology, 17, 3340-3346 (2006).
[69] W. Chanmanee, A. Watcharenwong, C. R. Chenthamarakshan, P. Kajitvichyanukul, N. R. de Tacconi, and K. Rajeshwar, “Titania nanotubes from pulse anodization of titanium foils”, Electrochem. Commun., 9, 2145-2149 (2007).
[70] D. J. Yang, H. G. Kim, S. J. Cho, and W. Y. Choi, “Thickness-conversion ratio from titanium to TiO2 nanotube fabricated by anodization method”, Mater. Lett., 62, 775-779 (2008).
[71] J. Bai, B. Zhou, L. Li, Y. Liu, Q. Zheng, J. Shao, X. Zhu, W. Cai, J. Liao, and L. Zou, “The formation mechanism of titania nanotube arrays in hydrofluoric acid electrolyte”, J. Mater. Sci., 43, 1880-1884 (2008).
[72] S. H. Kang, J. Y. Kim, H. S. Kim, and Y. E. Sung, “ Formation and mechanistic study of self-ordered TiO2 nanotubes on Ti substrate”, J. Ind. Eng. Chem., 14, 52-59 (2008).
[73] R. Beranek, H. Hildebrand, and P. Schmuki, “Self-organized porous titanium oxide prepared in H2SO4/HF electrolytes”, Electrochem. Solid State Lett., 6, B12-14 (2003).
[74] J. Zhao, X. Wang, R. Chen, and L. Li, “Fabrication of titanium oxide nanotube arrays by anodic oxidation”, Solid State Commun., 134, 705-710 (2005).
[75] 陳慧英,“氧化鋁薄膜之製備及其在氣體分離上之應用”,國立成功大學博士論文 (1994).
[76] S. Ijima, “Helical microtubules of graphitic carbon”, Nature, 354, 56-58 (1991).
[77] Y. Yin, Y. Lu, Y. Sun, and Y. Xia, “Silver nanowires can be directly coated with amorphous silica to generate well-controlledcoaxial nanocables of silver/silica”, Nano Lett., 2, 427-430 (2002).
[78] Y. Sun, B. T. Mayers, and Y. Xia, “Template-engaged replacement reaction: a one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors”, Nano Lett., 2, 481-485 (2002).
[79] X. Wen, and S. Yang, “Cu2S/Au core/sheathnanowires prepared by a simple redox deposition method”, Nano Lett., 2, 451-454 (2002).
[80] P. Hoyer, “Formation of a titanium dioxide nanotube array”, Langmuir, 12, 1411-1413 (1996).
[81] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, “Formation of titanium oxide nanotubes”, Langmuir, 14, 3160-3163 (1998).
[82] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, “Titania nanotubes prepared by chemical processing”, Adv. Mater., 11, 1307-1311 (1999).
[83] Q. Chen, W. Zhou, G. H. Du, and L. M. Peng, “Trititanate nanotubes made via a single alkali treatment”, Adv. Mater., 14, 1208-1211 (2002).
[84] S. Kobayashi, K. Hanabusa, N. Hamasaki, M. Kimura, and H. Shirai, “Preparation of TiO2 hollow-fibers using supramolecular assemblies”, Chem. Mater., 12, 1523-1525 (2000).
[85] V. Zwilling, E. D. Ceretti, A. B. Forveille, D. David, M. Y. Perrin, and M. Aucouturier, “Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy”, Surf. Interface Anal., 27, 629-637 (1999).
[86] J. M. Macak, H. Tsuchiya, and P. Schmuki, “High-aspect-ration TiO2 nanotubes by anodization of titanium”, Angew. Chem.-Int. Edit., 44, 2100-2102 (2005).
[87] J. P. O`Sullivan, and G. C. Wood, “The morphology and mechanism of formation of porous anodic films on alumina,” Proc. R. Soc. (London), A317, 511 (1970).
[88] J. G. Mavroides, J. A. Kafalas, and D. F. Kolesar, “Photoelectrolysis of water in cells with SrTiO3 anodes”, Appl. Phys. Lett., 28, 241-243 (1976).
[89] K. H. Yoon, and T. H. Kim, “Photoeffects in undoped and doped SrTiO3 ceramic electrodes”, J. Solid State Chem., 67, 359-363 (1987).
[90] J. H. Kennedy, and K. W. Frese, “Photo-oxidation of water at Barium Titanate Electrodes”, J. Electrochem. Soc., 123, 1683-1686 (1976).
[91] G. Hodes, D. Cahen, and J. Manassen, “Tungsten trioxide as a photoanode for a photoelectrochemical cell (PEC)”, Nature, 260, 312-313 (1976).
[92] S. Licht, B. Wang, S. Mukerji, T. Soga, M. Umeno, and H. Tributsch, “Efficient Solar Water splitting, Exemplified by RuO2-Catalyzed AlGaAs/Si Photoelectrolysis”, J. Phys. Chem. B, 104, 8920-8924 (2000).
[93] A. K. Ghosh, and H. P. Maruska, “Photoelectrolysis of water in sunlight with sensitized semiconductor electrodes”, J. Electrochem. Soc., 124, 1516-1521 (1977).
[94] R. B. James, “Photoproduction of hydrogen: A review”, Sol. Energy, 57, 37–50 (1996).
[95] B. E. Warren, X-ray Diffraction, Wesley (1969).
[96] 霍登彥,“二氧化鈦薄膜之製備及其特性分析”,成功大學化工系碩士論文 (1997).
[97] Z. Wang, and X. Hu, “Fabrication and electrochromic properties of spin-coated TiO2 thin films from peroxo-polytitanic acid”, Thin Solid Films, 352, 62-65 (1999).
[98] Y. Xie, “Photoelectrochemical application of nanotubular titania photoanode”, Electrochim. Acta, 51, 3399-3406 (2006).
[99] Y. B. Xie, and X. Z. Li, “Preparation and characterization of TiO2/Ti film electrodes by anodization at low voltage for photoelectrocatalytic application” J. Appl. Electrochem., 36, 663-668 (2006).
[100] P. D. Fleischauer, and J. K. Allen, “Photochemical hydrogen formation by the use of titanium dioxide thin-film electrodes with visible-light excitation”, J. Phys. Chem., 82, 432-438 (1978).
[101] I. Barin, “Thermochemical data of pure substance, partⅠ. Weinheim: VCH Verlagsgeselschaft mbH”, 796 (1989).
[102] J. K. Burdett, T. Hughbanks, G. J. Miller, J. W. Richardson, and J. V. Smith, “Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K”, J. Am. Chem. Soc., 109, 3639-3646 (1987).
[103] I. E. Grey, L. Christina, C. M. MacRae, and L. A. Bursill, “Boron incorporation into rutile. Phase equilibria and structure considerations”, J. Solid State Chem., 127, 240-247 (1996).
[104] A. Wahl, M. Ulmann, A. Carroy, and J. Augustynski, “Highly selective photo-oxidation reactions at nanocrystalline TiO2 film electrodes”, J. Chem. Soc., Chem. Commun., 19, 2277-2278 (1994).
[105] J. L. Cao, Z. C. Wu, and J. Q. Zhang, “Photostability study of nanoporous TiO2 film electrodes in different pH solutions”, J. Electroanal. Chem., 595, 71-77 (2006).
[106] O. Teschke, “Theory and operation of a steady-state pH differential water electrolysis cell”, J. Appl. Electrochem., 12, 219, 223 (1982).
[107] K. Zhu, N. R. Neale, A. Miedaner, and A. J. Frank, “Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays”, Nano Lett., 7, 69-74 (2007).
[108] C. H. Liang, T.-W. Liou, W.-Y. Pong, and H.-I. Chen, “Preparation and characterization of sol-gel derived TiO2 / ITO photoelectrodes”, Surf. Rev. Lett., 15, 161-168 (2008).