簡易檢索 / 詳目顯示

研究生: 湯雯婷
Tang, Wen-Ting
論文名稱: 微波輔助方式製備g-C3N4/ Bi2WO6/ rGO 並在可見光下光催化降解布洛芬
Microwave-assisted synthesis of g-C3N4/ Bi2WO6/ rGO for photocatalytic degradation of ibuprofen under visible light
指導教授: 劉守恒
Liu, Shou-Heng
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 143
中文關鍵詞: 新興污染物布洛芬光觸媒Bi2WO6g-C3N4石墨烯
外文關鍵詞: Emerging Contaminants, Ibuprofen, Photocatalyst, Bi2WO6, g-C3N4, Graphene
相關次數: 點閱:52下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,新興污染物一直是被持續關注的議題,並且被視為對人類的內分泌系統以及環境生態是具有高危害風險的環境污染物。布洛芬(IBF)是一類非類固醇類抗炎藥物(NSAIDs),被歸類為藥物和個人護理產品類(PPCPs),目前被廣泛的使用在治療疼痛、消炎、發燒等症狀,由於布洛芬很難被自然降解以及其無法在傳統的水處理程序中有效地被去除,因此在出流水,地下水和地表水中都可以發現布洛芬的存在,而布洛芬也被證實在低濃度下便會干擾人類的內分泌系統以及對生物具有毒性。目前主要用於處理新興污染物的技術包括活性碳吸附、薄膜處理、生物處理以及高級氧化處理。然而,活性碳吸附、薄膜處理和生物處理皆需要花費較長的處理時間以及較昂貴的成本。因此,利用光觸媒降解新興污染物是一具潛力且對環境友善的技術。
    本研究所開發之可見光驅動的g-C3N4 / Bi2WO6 / rGO複合材料通過簡便、快速和低溫微波輔助的方法成功製備,並在可見光(λ > 420 nm)下降解布洛芬。g-C3N4/Bi2WO6/rGO複合材料之表面特性以XRD、FT-IR、TEM、SEM、UV-vis、PL及XPS進行分析。
    從UV-vis分析結果中,0.25 g-C3N4 / Bi2WO6 / 3% rGO複合材料之有較理想的能隙值,其值為2.55 eV。在光降解實驗中,發現以微波合成60分鐘之0.25g-C3N4 / Bi2WO6 / 3% rGO光催化劑具有最佳的可見光活性,其在240分鐘內達到約93%的布洛芬去除效率。此外,在本研究中亦有探討不同的操作條件(包括觸媒濃度、汙染物濃度、pH質及不同水體)對光催化效率之影響,並進一步研究布洛芬光降解產生之中間產物與反應機構,最後以酵母菌生物試驗法評估布洛芬及其中間產物對人體健康的影響,其結果可以得知布洛芬經過光催化降解後轉化成對於人體內分泌系統結抗活性較低的物質。

    In recent years, emerging contaminants have received concerns about the potential for significant environmental impact from water pollution. It has been recognized the environmental contaminants have the risk to human endocrine systems and wildlife. Ibuprofen (IBF) is classified as one of pharmaceuticals and personal care products (PPCPs) and non-steroidal anti-inflammatory drugs (NSAIDs). IBF is used for treatment of pain and fever widely. However, it is difficult to remove completely with natural degradation and conventional water treatment processes, thus it can be found in the effluent water, groundwater and surface water. IBF also has been proven that it has harmful effects on human and ecosystem even in low concentrations. In order to remove emerging contaminants from water, there are three major methods: phase-changing technologies (e.g. activated carbon, membrane technology), biological processes and advanced oxidation processes. However, phase-changing technologies and biological processes need longer treatment time and higher cost. Therefore, photocatalysis may be an ideal and eco-friendly strategy for the removal of emerging contaminants.
    In this study, the visible-light-driven Z-scheme g-C3N4/Bi2WO6/rGO composites were successfully prepared via a facile, rapid and low temperature microwave-assisted method. The prepared g-C3N4/Bi2WO6/ rGO photocatalysts are tested under the visible light (λ>420 nm) irradiation. The physical properties and morphologies of the photocatalysts were characterized by XRD, XPS, TEM, SEM, PL, FT-IR, UV-Visible spectroscopy and so on.
    From the UV-vis diffuse reflectance spectrum, the band gaps of the g-C3N4 /Bi2WO6/3% rGO composites is 2.55 eV, which have the stronger visible light absorption to improve the photoexcitation efficiency. In the photodegradation experiments, it is found that the 0.25g-C3N4/Bi2WO6/3% rGO which was microwave treated for 60 min possesses the superior visible-light activity (IBF removal efficiency=ca. 93%) within 240 min. Moreover, the effects of different operating conditions such as catalyst concentration, IBF concentration, pH and water matrix on photocatalyst efficiency are also discussed. IBF photodegradation intermediates and corresponding reaction mechanism are further investigated by using LC-MS/MS. The effects of ibuprofen and the intermediate products on the human health are also evaluated by the bioassay antagonist activity experiments, the result shows that the intermediate products of photodegraded IBF have the lower effect on inhibiting human endocrine systems than the pristine IBF.

    摘要 I ABSTRACT II CONTENT IV LIST OF TABLES VII LIST OF FIGURES IX CHAPTER 1 INTRODUCTION 1 1.1 Motivations 1 1.2 Objective 2 CHAPTER 2 LITERATURES REVIEW 3 2.1 Emerging Contaminants 3 2.1.1 Ibuprofen (IBF) 4 2.1.2 Treatment technologies for emerging contaminants 6 2.2 Photocatalysis 11 2.2.1 Photocatalyst 11 2.2.2 Photocatalytic of degradation of ibuprofen 15 2.3 Bismuth Tungsten Oxide 17 2.4 Graphitic Carbon Nitride 20 2.5 Graphene 23 2.5.1 Physical and chemical properties 24 2.5.2 Synthesis of graphene 25 2.6 Microwave synthesis 28 CHAPTER 3 EXPERIMENTAL METHODS 30 3.1 Experiment design and process 30 3.2 Photocatalyst preparation 31 3.2.1 Chemical 31 3.2.1 Synthesis of Graphene Oxide (GO) 32 3.2.3 Synthesis of Graphitic Carbon Nitride (g-C3N4) 34 3.2.4 Synthesis of g-C3N4/ Bi2WO6 /rGO 35 3.3 Characterization and Analysis 37 3.3.1 Scanning Electron Microscope (SEM) 37 3.3.2 Transmission Electron Microscope (TEM) 37 3.3.3 X-ray Diffraction (XRD) 38 3.3.4 X-ray Photoelectron Spectroscopy (XPS) 38 3.3.5 Photo-Luminescence (PL) 38 3.3.6 Diffuse Reflectance Ultraviolet/Visible spectra (DR UV-Vis) 39 3.3.7 Fourier Transform Infrared Spectrometer (FTIR) 39 3.3.8 High Performance Liquid Chromatography-UV Detector 39 3.3.9 Raman Spectroscopy 40 3.3.10 Brunauer–Emmett–Teller (BET) 40 3.3.11 Liquid Chromatography–Mass Spectrometry 40 3.4 Photocatalytic degradation procedure 41 3.5 Bioassay analysis procedure 42 CHAPTER 4 RESULTS AND DISCUSSION 47 4.1 Photocatalytic degradation of IBF by g-C3N4/Bi2WO6/X% rGO 47 4.1.1 XRD 47 4.1.2 FT-IR 49 4.1.3 TEM 51 4.1.4 SEM 55 4.1.5 UV-vis 59 4.1.6 PL 62 4.1.7 XPS 63 4.1.8 Raman 70 4.1.9 BET 72 4.1.10 Photocatalytic degradation 73 4.2 Photocatalytic degradation of IBF by Yg-C3N4/Bi2WO6/3% rGO 79 4.2.1 XRD 79 4.2.2 FT-IR 81 4.2.3 TEM 82 4.2.4 SEM 83 4.2.5 XPS 84 4.2.6 BET 87 4.2.7 Photocatalytic degradation 88 4.3 Effect of microwave treatment time on 0.25 g-C3N4/Bi2WO6/3% rGO morphology and photocatalytic activity 93 4.3.1 XRD 93 4.3.2 FT-IR 95 4.3.3 TEM 96 4.3.4 SEM 98 4.3.5 HR-AEM 100 4.3.6 BET 102 4.3.7 Photocatalytic degradation 103 4.4 Operating conditions 108 4.4.1 Effect of catalyst concentration 108 4.4.2 Effect of IBF concentration 112 4.4.3 Effect of pH 116 4.4.4 Effect of water matrix 121 4.5 Stability experiment 123 4.6 Photocatalytic mechanism 125 4.7 Photodegradation intermediates of IBF 128 4.8 Bioassay analysis 132 CHAPTER 5 CONCLUSIONS 134 REFERENCES 136

    Allen, M. J., Tung, V. C., & Kaner, R. B. (2009). Honeycomb carbon: a review of graphene. Chemical reviews, 110(1), 132-145.
    Al-Othman, Z. A., Ali, R., & Naushad, M. (2012). Hexavalent chromium removal from aqueous medium by activated carbon prepared from peanut shell: adsorption kinetics, equilibrium and thermodynamic studies. Chemical Engineering Journal, 184, 238-247.
    Article, P. (n.d.). The rise of graphene, 183-191.
    Baccar, R., Sarrà, M., Bouzid, J., Feki, M., & Blánquez, P. (2012). Removal of pharmaceutical compounds by activated carbon prepared from agricultural by-product. Chemical engineering journal, 211, 310-317.
    Bing, J., Hu, C., Nie, Y., Yang, M., & Qu, J. (2015). Mechanism of catalytic ozonation in Fe2O3/Al2O3@SBA-15 aqueous suspension for destruction of ibuprofen. Environmental science & technology, 49(3), 1690-1697.
    Cabeza, Y., Candela, L., Ronen, D., & Teijon, G. (2012). Monitoring the occurrence of emerging contaminants in treated wastewater and groundwater between 2008 and 2010. The Baix Llobregat (Barcelona, Spain). Journal of hazardous materials, 239, 32-39.
    Cao, X. F., Zhang, L., Chen, X. T., & Xue, Z. L. (2011). Microwave-assisted solution-phase preparation of flower-like Bi2WO6 and its visible-light-driven photocatalytic properties. CrystEngComm, 13(1), 306-311.
    Cappon, G. D., Cook, J. C., & Hurtt, M. E. (2003). Relationship between cyclooxygenase 1 and 2 selective inhibitors and fetal development when administered to rats and rabbits during the sensitive periods for heart development and midline closure. Birth Defects Research Part B: Developmental and Reproductive Toxicology, 68(1), 47-56.
    Caviglioli, G., Valeria, P., Brunella, P., Sergio, C., Attilia, A., & Gaetano, B. (2002). Identification of degradation products of ibuprofen arising from oxidative and thermal treatments. Journal of pharmaceutical and biomedical analysis, 30(3), 499-509.
    Chen, J., Shen, S., Guo, P., Wang, M., Wu, P., Wang, X., & Guo, L. (2014). In-situ reduction synthesis of nano-sized Cu2O particles modifying g-C3N4 for enhanced photocatalytic hydrogen production. Applied Catalysis B: Environmental, 152, 335-341.
    Cho, H. H., Huang, H., & Schwab, K. (2011). Effects of solution chemistry on the adsorption of ibuprofen and triclosan onto carbon nanotubes. Langmuir, 27(21), 12960-12967.
    Di, J., Xia, J., Yin, S., Xu, H., Xu, L., Xu, Y., ... & Li, H. (2014). Preparation of sphere-like g-C3N4/BiOI photocatalysts via a reactable ionic liquid for visible-light-driven photocatalytic degradation of pollutants. Journal of Materials Chemistry A, 2(15), 5340-5351.

    Djurišić, A. B., Leung, Y. H., & Ng, A. M. C. (2014). Strategies for improving the efficiency of semiconductor metal oxide photocatalysis. Materials Horizons, 1(4), 400-410.
    Dong, F., Zhao, Z., Xiong, T., Ni, Z., Zhang, W., Sun, Y., & Ho, W. K. (2013). In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis. ACS applied materials & interfaces, 5(21), 11392-11401.
    Dong, S., Ding, X., Guo, T., Yue, X., Han, X., & Sun, J. (2017). Self-assembled hollow sphere shaped Bi2WO6/RGO composites for efficient sunlight-driven photocatalytic degradation of organic pollutants. Chemical Engineering Journal, 316, 778-789.
    Eggen, T., Moeder, M., & Arukwe, A. (2010). Municipal landfill leachates: a significant source for new and emerging pollutants. Science of the Total Environment, 408(21), 5147-5157.
    El-Shafey, E. S. I., Al-Lawati, H., & Al-Sumri, A. S. (2012). Ciprofloxacin adsorption from aqueous solution onto chemically prepared carbon from date palm leaflets. journal of Environmental Sciences, 24(9), 1579-1586.
    El-Sheikh, S. M., Khedr, T. M., Hakki, A., Ismail, A. A., Badawy, W. A., & Bahnemann, D. W. (2017). Visible light activated carbon and nitrogen co-doped mesoporous TiO2 as efficient photocatalyst for degradation of ibuprofen. Separation and Purification Technology, 173, 258-268.
    Fleming, C. A., Mezei, A., Bourricaudy, E., Canizares, M., & Ashbury, M. (2011). Factors influencing the rate of gold cyanide leaching and adsorption on activated carbon, and their impact on the design of CIL and CIP circuits. Minerals Engineering, 24(6), 484-494.
    Flippin, J. L., Huggett, D., & Foran, C. M. (2007). Changes in the timing of reproduction following chronic exposure to ibuprofen in Japanese medaka, Oryzias latipes. Aquatic Toxicology, 81(1), 73-78.
    Garg, B., Bisht, T., & Ling, Y. C. (2014). Graphene-based nanomaterials as heterogeneous acid catalysts: a comprehensive perspective. Molecules, 19(9), 14582-14614.
    Ge, L., Han, C., & Liu, J. (2011). Novel visible light-induced g-C3N4/Bi2WO6 composite photocatalysts for efficient degradation of methyl orange. Applied Catalysis B: Environmental, 108, 100-107.
    Gravel, A., & Vijayan, M. M. (2007). Non-steroidal anti-inflammatory drugs disrupt the heat shock response in rainbow trout. Aquatic toxicology, 81(2), 197-206.
    Grover, D. P., Zhou, J. L., Frickers, P. E., & Readman, J. W. (2011). Improved removal of estrogenic and pharmaceutical compounds in sewage effluent by full scale granular activated carbon: impact on receiving river water. Journal of Hazardous Materials, 185(2), 1005-1011.
    Guedidi, H., Reinert, L., Lévêque, J. M., Soneda, Y., Bellakhal, N., & Duclaux, L. (2013). The effects of the surface oxidation of activated carbon, the solution pH and the temperature on adsorption of ibuprofen. Carbon, 54, 432-443.
    Haque, E., Kim, C. M., & Jhung, S. H. (2011). Facile synthesis of cuprous oxide using ultrasound, microwave and electric heating: effect of heating methods on synthesis kinetics, morphology and yield. CrystEngComm, 13(12), 4060-4068.
    Heberer, T. (2002). Tracking persistent pharmaceutical residues from municipal sewage to drinking water. Journal of Hydrology, 266(3), 175-189.
    Herlekar, M., Barve, S., & Kumar, R. (2014). Plant-mediated green synthesis of iron nanoparticles. Journal of Nanoparticles, 2014.
    Horiuchi, Y., Toyao, T., Takeuchi, M., Matsuoka, M., & Anpo, M. (2013). Recent advances in visible-light-responsive photocatalysts for hydrogen production and solar energy conversion–from semiconducting TiO 2 to MOF/PCP photocatalysts. Physical Chemistry Chemical Physics, 15(32), 13243-13253.
    Hu, X., Meng, X., & Zhang, Z. (2016). Synthesis and characterization of graphene oxide-modified Bi2WO6 and its use as photocatalyst. International Journal of Photoenergy, 2016.
    Huang, H., Liu, K., Chen, K., Zhang, Y., Zhang, Y., & Wang, S. (2014). Ce and F comodification on the crystal structure and enhanced photocatalytic activity of Bi2WO6 photocatalyst under visible light irradiation.
    Hummers Jr, W. S., & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the American Chemical Society, 80(6), 1339-1339.
    Ito-Harashima, S., Shiizaki, K., Kawanishi, M., Kakiuchi, K., Onishi, K., Yamaji, R., & Yagi, T. (2015). Construction of sensitive reporter assay yeasts for comprehensive detection of ligand activities of human corticosteroid receptors through inactivation of CWP and PDR genes. Journal of pharmacological and toxicological methods, 74, 41-52.
    Kudo, A., & Miseki, Y. (2009). Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews, 38(1), 253-278.
    Lapworth, D. J., Baran, N., Stuart, M. E., & Ward, R. S. (2012). Emerging organic contaminants in groundwater: a review of sources, fate and occurrence. Environmental pollution, 163, 287-303.
    Li, C., Chen, G., Sun, J., Dong, H., Wang, Y., & Lv, C. (2014). Construction of Bi2WO6 homojunction via QDs self-decoration and its improved separation efficiency of charge carriers and photocatalytic ability. Applied Catalysis B: Environmental, 160, 383-389.
    Li, H., Li, N., Wang, M., Zhao, B., & Long, F. (2018). Synthesis of novel and stable g-C3N4-Bi2WO6 hybrid nanocomposites and their enhanced photocatalytic activity under visible light irradiation. Open Science, 5(3), 171419.
    Li, W. C. (2014). Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil. Environmental Pollution, 187, 193-201.
    Li, Y., Chen, L., Wang, Y., & Zhu, L. (2016). Advanced nanostructured photocatalysts based on reduced graphene oxide-flower-like Bi2WO6 composites for an augmented simulated solar photoactivity activity. Materials Science and Engineering: B, 210, 29-36.
    Li, Y., Liu, J., Huang, X., & Li, G. (2007). Hydrothermal synthesis of Bi2WO6 uniform hierarchical microspheres. Crystal growth & design, 7(7), 1350-1355.
    Liao, G., Chen, S., Quan, X., Yu, H., & Zhao, H. (2012). Graphene oxide modified gC 3 N 4 hybrid with enhanced photocatalytic capability under visible light irradiation. Journal of Materials Chemistry, 22(6), 2721-2726.
    Lin, A. Y. C., Lin, C. A., Tung, H. H., & Chary, N. S. (2010). Potential for biodegradation and sorption of acetaminophen, caffeine, propranolol and acebutolol in lab-scale aqueous environments. Journal of Hazardous Materials, 183(1), 242-250.
    Lin, S., Liu, L., Hu, J., Liang, Y., & Cui, W. (2015). Nano Ag@ AgBr surface-sensitized Bi2WO6 photocatalyst: oil-in-water synthesis and enhanced photocatalytic degradation. Applied Surface Science, 324, 20-29.
    Linares, R. V., Yangali-Quintanilla, V., Li, Z., & Amy, G. (2011). Rejection of micropollutants by clean and fouled forward osmosis membrane. Water research, 45(20), 6737-6744.
    Liu, S., & Yu, J. (2008). Cooperative self-construction and enhanced optical absorption of nanoplates-assembled hierarchical Bi2WO6 flowers. Journal of Solid State Chemistry, 181(5), 1048-1055.
    Liu, X., Pan, L., Lv, T., & Sun, Z. (2013). Investigation of photocatalytic activities over ZnO–TiO2–reduced graphene oxide composites synthesized via microwave-assisted reaction. Journal of colloid and interface science, 394, 441-444.
    Luo, Y., Guo, W., Ngo, H. H., Nghiem, L. D., Hai, F. I., Zhang, J., ... & Wang, X. C. (2014). A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Science of the Total Environment, 473, 619-641.
    Lv, T., Pan, L., Liu, X., Lu, T., Zhu, G., Sun, Z., & Sun, C. Q. (2012). One-step synthesis of CdS–TiO2–chemically reduced graphene oxide composites via microwave-assisted reaction for visible-light photocatalytic degradation of methyl orange. Catalysis Science & Technology, 2(4), 754-758.
    Ma, D., Wu, J., Gao, M., Xin, Y., Ma, T., & Sun, Y. (2016). Fabrication of Z-scheme g-C3N4/RGO/Bi2WO6 photocatalyst with enhanced visible-light photocatalytic activity. Chemical Engineering Journal, 290, 136-146.

    Macphee, D. E., & Folli, A. (2016). Photocatalytic concretes—The interface between photocatalysis and cement chemistry. Cement and Concrete Research, 85, 48-54.
    Mahanty, S., & Ghose, J. (1991). Preparation and optical studies of polycrystalline Bi2WO6. Materials letters, 11(8-9), 254-256.
    Méndez-Arriaga, F., Esplugas, S., & Giménez, J. (2010). Degradation of the emerging contaminant ibuprofen in water by photo-Fenton. Water research, 44(2), 589-595.
    Méndez-Arriaga, F., Esplugas, S., & Giménez, J. (2010). Degradation of the emerging contaminant ibuprofen in water by photo-Fenton. Water research, 44(2), 589-595.
    Miranda-García, N., Maldonado, M. I., Coronado, J. M., & Malato, S. (2010). Degradation study of 15 emerging contaminants at low concentration by immobilized TiO 2 in a pilot plant. Catalysis Today, 151(1), 107-113.
    Mohamed, R. M., & Aazam, E. S. (2013). Enhancement of photocatalytic properties of Bi2WO6 nanoparticles by Pt deposition. Materials Research Bulletin, 48(9), 3572-3578.
    Montes-Grajales, D., Fennix-Agudelo, M., & Miranda-Castro, W. (2017). Occurrence of personal care products as emerging chemicals of concern in water resources: A review. Science of The Total Environment, 595, 601-614.
    Muñoz-Batista, M. J., Kubacka, A., & Fernandez-Garcia, M. (2014). Effect of g-C3N4 loading on TiO2-based photocatalysts: UV and visible degradation of toluene. Catalysis Science & Technology, 4(7), 2006-2015.
    Ohno, T., Murakami, N., Koyanagi, T., & Yang, Y. (2014). Photocatalytic reduction of CO2 over a hybrid photocatalyst composed of WO3 and graphitic carbon nitride (g-C3N4) under visible light. Journal of CO2 Utilization, 6, 17-25.
    Ola, O., & Maroto-Valer, M. M. (2015). Review of material design and reactor engineering on TiO 2 photocatalysis for CO 2 reduction. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 24, 16-42.
    Ong, W. J., Tan, L. L., Ng, Y. H., Yong, S. T., & Chai, S. P. (2016). Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability?. Chem. Rev, 116(12), 7159-7329.
    Overturf, M. D., Overturf, C. L., Baxter, D., Hala, D. N., Constantine, L., Venables, B., & Huggett, D. B. (2012). Early life-stage toxicity of eight pharmaceuticals to the fathead minnow, Pimephales promelas. Archives of environmental contamination and toxicology, 62(3), 455-464.
    Pal, A., Gin, K. Y. H., Lin, A. Y. C., & Reinhard, M. (2010). Impacts of emerging organic contaminants on freshwater resources: review of recent occurrences, sources, fate and effects. Science of the Total Environment, 408(24), 6062-6069.
    Paterakis, N., Chiu, T. Y., Koh, Y. K. K., Lester, J. N., McAdam, E. J., Scrimshaw, M. D., ... & Cartmell, E. (2012). The effectiveness of anaerobic digestion in removing estrogens and nonylphenol ethoxylates. Journal of hazardous materials, 199, 88-95.
    Peng, M., Li, H., Kang, X., Du, E., & Li, D. (2017). Photo-degradation ibuprofen by UV/H2O2 process: response surface analysis and degradation mechanism. Water Science and Technology, 75(12), 2935-2951.
    Prieto-Rodríguez, L., Oller, I., Klamerth, N., Agüera, A., Rodríguez, E. M., & Malato, S. (2013). Application of solar AOPs and ozonation for elimination of micropollutants in municipal wastewater treatment plant effluents. Water research, 47(4), 1521-1528.
    Qamar, M., Elsayed, R. B., Alhooshani, K. R., Ahmed, M. I., & Bahnemann, D. W. (2015). Highly efficient and selective oxidation of aromatic alcohols photocatalyzed by nanoporous hierarchical Pt/Bi2WO6 in organic solvent-free environment. ACS applied materials & interfaces, 7(2), 1257-1269.
    Qian, X., Yue, D., Tian, Z., Reng, M., Zhu, Y., Kan, M., ... & Zhao, Y. (2016). Carbon quantum dots decorated Bi2WO6 nanocomposite with enhanced photocatalytic oxidation activity for VOCs. Applied Catalysis B: Environmental, 193, 16-21.
    Rao, Y., Xue, D., Pan, H., Feng, J., & Li, Y. (2016). Degradation of ibuprofen by a synergistic UV/Fe (III)/Oxone process. Chemical Engineering Journal, 283, 65-75.
    Remya, N., & Lin, J. G. (2011). Current status of microwave application in wastewater treatment—a review. Chemical Engineering Journal, 166(3), 797-813.
    Richards, S. M., & Cole, S. E. (2006). A toxicity and hazard assessment of fourteen pharmaceuticals to Xenopus laevis larvae. Ecotoxicology, 15(8), 647-656.
    Rivera-Utrilla, J., Sánchez-Polo, M., Ferro-García, M. Á., Prados-Joya, G., & Ocampo-Pérez, R. (2013). Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere, 93(7), 1268-1287.
    Rodriguez, O., Peralta-Hernandez, J. M., Goonetilleke, A., & Bandala, E. R. (2017). Treatment Technologies for Emerging Contaminants in water: A review. Chemical Engineering Journal.
    Shi, Y., Yang, Z., Liu, Y., Yu, J., Wang, F., Tong, J., ... & Wang, Q. (2016). Fabricating a g-C 3 N 4/CuOx heterostructure with tunable valence transition for enhanced photocatalytic activity. RSC Advances, 6(46), 39774-39783.
    Silva, J. C. C., Teodoro, J. A. R., Afonso, R. J. D. C. F., Aquino, S. F., & Augusti, R. (2014). Photolysis and photocatalysis of ibuprofen in aqueous medium: characterization of by‐products via liquid chromatography coupled to high‐resolution mass spectrometry and assessment of their toxicities against Artemia Salina. Journal of Mass Spectrometry, 49(2), 145-153.
    Solís-Casados, D. A., Escobar-Alarcón, L., Gómez-Oliván, L. M., Haro-Poniatowski, E., & Klimova, T. (2017). Photodegradation of pharmaceutical drugs using Sn-modified TiO 2 powders under visible light irradiation. Fuel, 198, 3-10.
    Sotelo, J. L., Rodríguez, A. R., Mateos, M. M., Hernández, S. D., Torrellas, S. A., & Rodríguez, J. G. (2012). Adsorption of pharmaceutical compounds and an endocrine disruptor from aqueous solutions by carbon materials. Journal of Environmental Science and Health, Part B, 47(7), 640-652.
    Sui, Q., Huang, J., Deng, S., Chen, W., & Yu, G. (2011). Seasonal variation in the occurrence and removal of pharmaceuticals and personal care products in different biological wastewater treatment processes. Environmental science & technology, 45(8), 3341-3348.
    Sun, L., Zhao, X., Jia, C. J., Zhou, Y., Cheng, X., Li, P., ... & Fan, W. (2012). Enhanced visible-light photocatalytic activity of g-C3N4–ZnWO4 by fabricating a heterojunction: investigation based on experimental and theoretical studies. Journal of Materials Chemistry, 22(44), 23428-23438.
    Tang, L., Wang, J., Zeng, G., Liu, Y., Deng, Y., Zhou, Y., ... & Guo, Z. (2016). Enhanced photocatalytic degradation of norfloxacin in aqueous Bi2WO6 dispersions containing nonionic surfactant under visible light irradiation. Journal of hazardous materials, 306, 295-304.
    Tian, Y., Chang, B., Lu, J., Fu, J., Xi, F., & Dong, X. (2013). Hydrothermal synthesis of graphitic carbon nitride–Bi2WO6 heterojunctions with enhanced visible light photocatalytic activities. ACS applied materials & interfaces, 5(15), 7079-7085.
    Tian, Y., Chang, B., Lu, J., Fu, J., Xi, F., & Dong, X. (2013). Hydrothermal synthesis of graphitic carbon nitride–Bi2WO6 heterojunctions with enhanced visible light photocatalytic activities. ACS applied materials & interfaces, 5(15), 7079-7085.
    Wang, H., Lu, J., Wang, F., Wei, W., Chang, Y., & Dong, S. (2014). Preparation, characterization and photocatalytic performance of g-C3N4/Bi2WO6 composites for methyl orange degradation. Ceramics International, 40(7), 9077-9086.
    Wang, J., Tang, L., Zeng, G., Deng, Y., Liu, Y., Wang, L., ... & Zhang, C. (2017). Atomic scale g-C3N4/ Bi2WO6 2D/2D heterojunction with enhanced photocatalytic degradation of ibuprofen under visible light irradiation. Applied Catalysis B: Environmental, 209, 285-294.
    Wang, X., Maeda, K., Thomas, A., Takanabe, K., Xin, G., Carlsson, J. M., ... & Antonietti, M. (2009). A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature materials, 8(1), 76-80.
    WANG, Y., JIANG, Q., SHANG, J. K., XU, J., & LI, Y. X. (2016). Advances in the Synthesis of Mesoporous Carbon Nitride Materials. Acta Physico-Chimica Sinica, 32(8), 1913-1928.
    Xiang, Y., Fang, J., & Shang, C. (2016). Kinetics and pathways of ibuprofen degradation by the UV/chlorine advanced oxidation process. Water research, 90, 301-308.
    Xiao, X., Wei, J., Yang, Y., Xiong, R., Pan, C., & Shi, J. (2016). Photoreactivity and mechanism of g-C3N4 and Ag co-modified Bi2WO6 microsphere under visible light irradiation. ACS Sustainable Chemistry & Engineering, 4(6), 3017-3023.
    Yan, S. C., Li, Z. S., & Zou, Z. G. (2009). Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir, 25(17), 10397-10401.
    Yang, G., Fan, M., & Zhang, G. (2014). Emerging contaminants in surface waters in China—a short review. Environmental Research Letters, 9(7), 074018.
    Yangali-Quintanilla, V., Sadmani, A., McConville, M., Kennedy, M., & Amy, G. (2010). A QSAR model for predicting rejection of emerging contaminants (pharmaceuticals, endocrine disruptors) by nanofiltration membranes. Water research, 44(2), 373-384.
    Yuan, C., Hung, C. H., Li, H. W., & Chang, W. H. (2016). Photodegradation of ibuprofen by TiO2 co-doping with urea and functionalized CNT irradiated with visible light–Effect of doping content and pH. Chemosphere, 155, 471-478.
    Zhang, C., & Zhu, Y. (2005). Synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalysts. Chemistry of Materials, 17(13), 3537-3545.
    Zhang, G., Lü, F., Li, M., Yang, J., Zhang, X., & Huang, B. (2010). Synthesis of nanometer Bi2WO6 synthesized by sol-gel method and its visible-light photocatalytic activity for degradation of 4BS. Journal of Physics and Chemistry of Solids, 71(4), 579-582.
    Zhang, Y. I., Zhang, L., & Zhou, C. (2013). Review of chemical vapor deposition of graphene and related applications. Accounts of chemical research, 46(10), 2329-2339.
    Zhao, Q., Gong, M., Liu, W., Mao, Y., Le, S., Ju, S., ... & Jiang, T. (2015). Enhancement of visible-light photocatalytic activity of silver and mesoporous carbon co-modified Bi2WO6. Applied Surface Science, 332, 138-146.
    Zhou, Y., Ren, S., Dong, Q., Li, Y., & Ding, H. (2016). One-pot preparation of Bi/Bi 2 WO 6/reduced graphene oxide as a plasmonic photocatalyst with improved activity under visible light. RSC Advances, 6(105), 102875-102885.
    Zhu, S., Xu, T., Fu, H., Zhao, J., & Zhu, Y. (2007). Synergetic effect of Bi2WO6 photocatalyst with C60 and enhanced photoactivity under visible irradiation. Environmental science & technology, 41(17), 6234-6239.
    周佩欣 & 黃正君 (2016) 臺灣污水處理廠中多環芳香烴受體與孕激素受體干擾活性之綜合評估,國立成功大學環境工程學系,碩士論文。

    無法下載圖示 校內:2023-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE