簡易檢索 / 詳目顯示

研究生: 賴昱廷
Lai, Yu-Ting
論文名稱: 探討技術分析是否能提升GARCH模型對外匯波動度的預測能力
Can Technical Analysis Improve the Ability of the GARCH Model to Predict Foreign Exchange Volatility?
指導教授: 顏盟峯
Yen, Meng-Feng
共同指導教授: 劉裕宏
Liu, Yu-Hong
學位類別: 碩士
Master
系所名稱: 管理學院 - 財務金融研究所
Graduate Institute of Finance
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 26
中文關鍵詞: 技術分析ㄧ般化自我迴歸異質變異數模型外匯波動度廣義逐步預測力優劣檢定
外文關鍵詞: Technical analysis, GARCH, Foreign exchange volatility, Generalized Stepwise Superior Predictive Ability test
相關次數: 點閱:94下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的主要目的是在檢驗技術分析在外匯波動率的預測能力與獲利能力。本篇研究採用五大類技術指標(FR、SR、CB、MA、MOM),將共計1,085條的技術交易規則應用到4種外匯匯率(澳幣、歐元、英鎊、日幣)。我們採用以1,085條的技術交易規則擴充後的一般化自我相關條件異質變異模型 (GARCH(1,1) model)為比較模型,使用廣義逐步預測力優劣檢定(Generalized Stepwise Superior Predictive Ability test, SSPA(k) test)於樣本期間內探討是否比較模型對外匯波動度的預測力表現優於基準模型。本文想探討是否加入技術分析指標能進一步提升GARCH(1,1)對外匯波動度的預測力,並放在Hsu, Kuan and Yen(2013)的廣義逐步預測力優劣檢定方法來進行檢定,以避免資料探勘偏誤(data snooping bias)問題。因此,我們能夠在當資料探勘偏誤(data snooping bias)不存在下,討論在不同的幣別和不同的樣本期間中加入技術分析是否能有效地提升波動度模型對外匯波動度的預測能力。

    This paper examines the predictive and profitable ability of technical analysis in the foreign exchange volatility. We apply five technical indicators (FR, MA, CB, SR and MOM) which total 1,085 technical trading rules to four different foreign exchange rates (AUD, EU, GBP and JPY). We use the augmented GARCH(1,1) model with 1,085 technical trading rules as competing model and then exam whether the foreign exchange volatility predictability of competing model outperforms the benchmark model in the whole sample period by Generalized Stepwise Superior Predictive Ability test (SSPA(k) test). This paper would like to discuss whether technical analysis indicators can improve the ability of the GACH model to predict the foreign exchange volatility, also we have to test it by using SSPA(k) test according to Hsu, Kuan and Yen(2013) in order to avoid the data snooping bias. As a result, we are able to provide a big picture of the effectiveness of technical analysis in forecasting foreign exchange volatility across different currencies and periods without data snooping bias.

    摘要 I Abstract II I. Introduction 1 II. Literature Review 2 III. Methodology 6 3.1. Return and Realized Volatility 6 3.2. Technical indicators 7 3.3. In-sample Estimation 10 3.4. Out-of-sample Forecasting Performance 11 3.5. Generalized Stepwise SPA test 13 IV. Empirical Results 16 4.1. Data 16 4.2. Out-of-sample Performance by monthly data 17 4.3. Out-of-sample Performance by daily data 18 V. Conclusions 19 Appendix 21 References 24

    Andersen, T. G. and T. Bollerslev (1998) “Deutsche Mark-Dollar Volatility: Intraday Activity Patterns, Macroeconomic Announcements, and Longer run Dependencies,” Journal of Finance, 53(1), pp. 219-265.
    Andersen, T.G. and S. Lange and T. Bollerslev (1999) “Forecasting Financial Market Volatility: Sample Frequency vis-à-vis Forecast Horizon,” Journal of Empirical Finance, 6(5), pp. 457-477.
    Berger, D., A. Chaboud and E. Hjalmarsson (2009) “What Drives Volatility Persistence in the Foreign Exchange Market?” Journal of Financial Economics, 94(2), PP. 192-213.
    Bollerslev, T. (2001). “Generalized Autoregressive Conditional Heteroskedasticity,” Journal of Econometrics, 100(1), pp. A307-A327.
    Brock, W., B. Lebaron and J. Lakonishok (1992), “Simple Technical Trading Rules and the Stochastic Properties of Stock Returns,” Journal of Finance, 47(5), pp. 1731-1764.
    Clark, T. E. and M. W. McCracken (2009), “Improving Forecast Accuracy by Combining Recursive and Rolling Forecasts,” International Economic Review, 50(2), pp. 363-395.
    Engle, R. F. (1982), “Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United,” Econometrica, 50(4), pp. 987-1007.
    Gehrig, T. and L. Menkhoff (2006), “Extended Evidence on the use of Technical Analysis in Foreign Exchange,” International Journal of Finance & Economics, 11(4), pp. 327-338.
    Hansen, P. R. and A. Lunde (2005), “A Forecast Comparison of Volatility Models: Does Anything Beat a GARCH(1,1)?” Journal of Applied Econometrics, 20(7), pp. 873-889.
    Hsu, P. H., C. M. Kuan and Y. C. Hsu (2010), “Testing the Predictive Ability of Technical Analysis Using a new Stepwise Test without Data Snooping Bias,” Journal of Empirical Finance, 17(3), pp. 471-484.
    Hsu, P. H., C. M. Kuan and M. F. Yen (2013), “A Generalized Stepwise Procedure with Improved Power for Multiple Inequalities Testing,” unpublished manuscript.
    Irwin, S.H., C.R. Zulauf, M.E. Gerlow and J.N. Tinker (1997), Advances in Investment Analysis and Portfolio Management Volume 4: A performance comparison of a technical trading system with ARIMA models for soybean complex prices(1st ed.), Greenwich: JAI Press.
    Leuthold, R. M. (1972), “Random Walk and Price Trends: Live Cattle Futures Market,” Journal of Finance, 27(4), pp. 879-889.
    Lukac, L. P., B. W. Brorsen and S. H. Irwin (1988), “A Test of Futures Market Disequilibrium Using 12 Different Technical Trading Systems,” Applied Economics, 20(5), pp. 623-639.
    Marshall, B. R., J. M. Cahan and R. H. Cahan (2008), “Does intraday technical analysis in the US equity market have value?” Journal of Empirical Finance, 15(2), pp. 199-210.
    Neely, C. J., D. E. Rapach, J. Tu and G. Zhou (2012), “Forecasting the Equity Risk Premium: The Role of Technical Indicators,” unpublished manuscript.
    Neely, C. J., J. M. Ulrich and P. A. Weller (2009), “The Adaptive Markets Hypothesis: Evidence from the Foreign Exchange Market,” Journal of Financial and Quantitative Analysis, 44(2), pp. 467-488.
    Neely, C. J. and P. A. Weller (2011), “Technical Analysis in the Foreign Exchange Market,” working paper.
    Okunev, J. and D. White (2003), “Do Momentum-based Strategies Still Work in Foreign Currency Markets?” Journal of Financial and Quantitative Analysis, 38(2), pp. 425-447.
    Park, C. H. and S. H. Irwin (2010), “A Reality Check on Technical Trading Rule Profits in the U.S. Futures Markets, “Journal of Futures Markets, 30(7), pp. 633-659.
    Pesaran, M. H. and A. Timmermann (2007), “Selection of estimation window in the presence of breaks,” Journal of Econometrics, 137(1), pp. 134-161.
    Roberts, M. C. (2005), “Technical Analysis and Genetic Programming: Constructing and Testing a Commodity Portfolio,” Journal of Futures Markets, 25(7), pp. 643-660.
    Romano, J. P., A. M. Shaikh and M. Wolf (2008), “Formalized Data Snooping Based on Generalized Error Rates,” Econometric Theory, 24(2), pp. 404-447.
    Stevenson, R. A. and R. M. Bear (1970), “Commodity Futures: Trends or Random Walks,” Journal of Finance, 25(1), pp. 65-81.
    Sullivan, R., A. Timmermann and H. White (1999), “"Data-snooping, Technical Trading Rule Performance, and the Bootstrap,” Journal of Finance, 54(5), pp. 1647-1691.
    Sweeney, R. J. (1986), “Beating the Foreign Exchange Market,” Journal of Finance, 41(1), pp. 163-182.
    Silber, W. L., (1994), “Technical Trading: When it Works and When it Doesn’t,” Journal of Derivatives, 1(3), pp. 39-44.

    無法下載圖示 校內:2016-07-18公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE