| 研究生: |
何冠廷 He, Guan-Ting |
|---|---|
| 論文名稱: |
自走車最佳化軌跡規劃、軌跡追蹤和障礙物閃避 Optimization-based Path Planning, Trajectory Tracking and Obstacle Avoidance of 1:10 scale RC car |
| 指導教授: |
譚俊豪
Tarn, Jiun-Haur |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 53 |
| 中文關鍵詞: | 自動駕駛 、最佳化控制 、模型預測控制 、軌跡規劃 、障礙物閃避 、自動停車 、Frenet Planning |
| 外文關鍵詞: | Autonomous Vehicle, Optimal Control, MPC, Trajectory Tracking, Obstacle Avoidance, Frenet Planning, Path Planning, Auto Parking |
| 相關次數: | 點閱:107 下載:12 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在未來自動駕駛的車輛能感測環境及導航,在遇到突發狀況能做出快速且即時的判斷。本篇著重於車輛路線追蹤且偵測到障礙物能適時的做出閃避或是停下避免碰撞。主要架構是基於數學上的最佳化方式為核心,經由車輛動態模型預測控制的方法去達成目標。
車輛動態模型預測控制做路徑規劃及追蹤,使用車輛動態模型,制定成標準的最佳化問題,再藉由數值解的程式得到最佳解;障礙物閃避的部分則是系統根據當下的位置及車輛動態,並把雷射偵測到的障礙物設成有效限制放進最佳化問題裡,進一步完成閃避。本篇完成了軌跡追蹤、障礙物閃避及自動停車的模擬。
在實驗中,利用模型預測控制做障礙物閃避相對於軌跡追蹤,需要花較長的計算時間,所以沒辦法在這篇論文順利完成實驗。在這提出另一個路線規劃的演算法Frenet Planning,規劃一條沒有發生碰撞的路線,再使用模型預測控制追蹤路線完成避障實驗。
In the future, the autonomous vehicles will be able to sense the environment, navigate on their own and handle unexpected conditions. This thesis focuses on the trajectory tracking, obstacle avoidance and auto parking.
In the thesis, we use Model Predictive Control (MPC) for experiments. MPC utilizes the current states of the vehicle and the valid constraints to formulate an optimization problem, and then the car is able to safely dodge the objects to achieve the goal. In this thesis, we already completed the simulations of trajectory tracking, obstacle avoidance and auto parking.
In the experiment, we use Robot operating system (ROS) providing a useful platform for connecting different nodes to implement MPC. Besides, Julia is a programming language fusing ROS, other programming languages and numerical solvers such as IPopt to develop our experiment platform. However, using MPC to avoid obstacles require a long calculation time, it’s impossible to implement on the car. In the thesis, another trajectory planning algorithm Frene ́t Planning is applied to plan a collision-free path, we use model predictive control to track the path achieving obstacle avoidance in real time.
[1]S. C. K. Ho, "Autonomous Trajectory Tracking and Obstacle Avoidance via Pure Pursuit and Optimization", 2017.
[2]"Massachusetts Institute of Technology (MIT) RACECAR Project.," [Online]. Available: https://mit-racecar.github.io/.
[3]"LOCOCAR Project Source Code.," [Online]. Available: https://github.com/mrsd16teamd/loco_car.
[4]Patrick Spengler & Christoph Gammeter, "Modeling of 1:43 scale race cars," 2010.
[5]A. Liniger, "Autonomous Drift Control," 2012.
[6]L. Wunderli, MPC based Trajectory Tracking for 1:43 scale Race car, 2011.
[7]Y. Gao, Model Predictive Control for Autonomous and Semiautonomous Vehicles, 2014.
[8]YongsoonYoon, JonghoShin,, "Model-predictiveactive steering and obstacle avoidance for autonomous ground vehicles," 2008.
[9]"BARC Project Source Code," [Online]. Available: https://github.com/MPC-Berkeley/barc.
[10]Iian Dunnling, Joey Huchette, Miles Lubin, JuMP: A Modeling Language for Mathematical Optimization, 2017.
[11]Moritz Werling, Julius Ziegler, S¨oren Kammel, and Sebastian Thrun, Optimal Trajectory Generation for Dynamic Street Scenarios in a Frenet Frame, 5 2010.
[12]J. H. M. L. Iain Dunning, “JuMP: A Modeling Language for Mathematical Optimization,” 2017.
[13]Y. Kuwata, "Real-time Trajectory Design for Unmanned Aerial Vehicles using," 2003.