簡易檢索 / 詳目顯示

研究生: 蘇永鎮
Su, Yung-Jen
論文名稱: 陣列式單細胞動作電位量測平台之研製
Platform array fabrication of action potential measurement for single cells
指導教授: 羅錦興
Luo, Ching-Hsing
學位類別: 碩士
Master
系所名稱: 工學院 - 微機電系統工程研究所
Institute of Micro-Electro-Mechancial-System Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 65
中文關鍵詞: 微孔膜片鉗軟微影感應耦合電漿離子蝕刻微滴量管
外文關鍵詞: ICP, micropore, patch-clamp, Microcontact print, micropipette
相關次數: 點閱:103下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究主要目的是在矽晶片上實現微吸量管(micropipette),利用微機電系統(Micro-Electro-Mechanical-System)技術將陣列式的微吸量管研發出來,用以取代電生理學中膜片鉗(patch clamp)離子通道量測時所使用的玻璃吸量管(pipette)。
      本論文成功利用微機電製程做出達到2μm孔徑之微滴量管(micropipette),為了搭配軟微影的方式來進行表面改質,需要一個具有高低差之平台來配合進行,因此本研究不僅完成2μm之微滴量管(micropipette),並且成功結合平台,符合後續研究上的需要。
      最後,本論文成功將微吸量管與平台整合,並且搭配陣列式的設計,以期達到自動化與高效率的檢測,對於從事電生理學研究者必定有許多助益,未來希望能夠藉由此晶片整合CMOS製程,達成整合系統與感測器之功能型晶片。

     The purpose of this study is to realize micropipette on silicon substrate. By utilizing Micro-Electro-Mechanical-System technique, these micropipette arrays are developed to substitute for the glass-pipette which is used in the patch-clamp ion-channel recording.
     The micropipette which is about 2μm in diameter has been successfully fabricated by utilizing the MEMS process. In order to use Microcontact print (μCP) to conduct surface treatment of the chip, a platform is needed to complete the process. Therefore, the results of this study are not only the realization of the 2μm micropipette but also the successful integration of the platform and micropipette.
     Finally, after the integration of the micropipette and the platform has been successfully accomplished, with the design of platform array we hope this design would provide automatic and high efficient detection which may be a useful tool for some electrobiology researchers. In the future, integrating this chip with CMOS MEMS to realize a multi-function biochip can be a further study suggested.

    目錄 摘要...................................................................i ABSTRACT...............................................................ii 誌謝...................................................................iii 目錄...................................................................v 表目錄.................................................................viii 圖目錄.................................................................ix 第一章 緒論...........................................................1  1-1 前言.............................................................1  1-2 研究動機.........................................................1  1-3 文獻回顧.........................................................3  1-4 本文架構.........................................................10 第二章 膜片鉗與生物微機電系統之整合...................................11  2-1 微機電系統簡介...................................................11  2-2 微機電系統在生醫上之應用.........................................12  2-3 離子通道(ion channel)簡介......................................13  2-4 細胞膜電位.......................................................14  2-5 膜片鉗與離子通道(ion channel)之關聯............................14  2-6 膜片鉗紀錄(Patch clamp recording)之重要性........................15  2-7 以微機電(MEMS)技術取代傳統膜片鉗...............................16 第三章 膜片鉗晶片製作.................................................17  3-1 光罩設計.........................................................17  3-2 膜片鉗製作步驟...................................................21  3-3 晶圓清洗.........................................................24  3-4 氧化製程(Oxidation)............................................25  3-5 微影(photolithography)製程.....................................27  3-6 蝕刻製程.........................................................30   3-6-1 濕式蝕刻.....................................................31   3-6-2 TMAH蝕刻製程.................................................32   3-6-3 乾式蝕刻.....................................................33   3-6-4 感應耦合電漿離子蝕刻(Inductively Coupled Plasma Reactive Ion Etch ,      ICP)........................................................34  3-7 軟微影...........................................................36   3-7-1 以軟微影進行表面改質(由高雄大學化工所鍾宜璋老師實驗室協助進行)[7]      [19].........................................................37  3-8 SU-8製程[20].....................................................40  3-9 PDMS製程.........................................................44 第四章 結果與討論 .....................................................45  4-1 平台製程.........................................................45  4-2 矽薄膜製程.......................................................45  4-3 微孔洞製程.......................................................51  4-4 微孔洞與平台之結合...............................................53  4-5 晶片絕緣與微孔縮小...............................................56  4-6 PDMS與晶片之組裝.................................................59 第五章 結論與未來展望..................................................60  5-1 結論.............................................................60  5-2 未來展望.........................................................61 參考文獻...............................................................62 自述...................................................................65

    [1] N. Fertig, Ch. Meyer, R. H. Blick, Ch. Trautmann, and J. C. Behrends, “Microstructured glass chip for ion-channel electrophysiology,” The American Physical Society, 2001.
    [2] A. Stett, V. Bucher, C. Burkhardt. U. Weber, and W. Nisch, “Patch-clamping of primary cardiac cells with micro-openings in polyimide films,” Medical & Biological Engineering & Computing, 2003.
    [3] B. Matthews and W. Judy, “Characterization of a Micromachined Planar Patch Clamp for Cellular Electrophysiology,” IEEE, 2003.
    [4] N. Picollet-D’hahan, F. Sauter, F. Ricoul, C. Pudda, F. Marcel, T. Sordel, F. Chatelain, and I. Chartier, “Multi-Patch: A chip-based ion-channel assay system for drug screening,” International Conference on MEMS, NANO and Smart Systems, 2003.
    [5] R. Pantoja, M. Nagarah, M. Starace, A. Melosh, R. Blunck, F. Bezanilla, and R. Heath, “Silicon chip-based patch-clamp electrodes integrated with PDMS microfluidics,” Biosensors and Bioelectronics vol.20, pp.509–517, 2004.
    [6] S. Pandey, R. Mehrotra, S. Wykosky, and M. H. White, “Characterization of a MEMS BioChip for planar patch-clamp recording,” Solid-State Electronics vol.48, pp.2061–2066, 2004.
    [7] Y. C. Chung, Y. H. Chiu, Y. W. Wu, and Y. T. Tao, “Self-assembled biomimetic monolayers using phospholipid phospholipidcontaining disulfides,” Biomaterials vol.26, pp.2313–2324, 2005.
    [8] K. Biswas, and S. Kal, “Etch characteristics of KOH, TMAH and dual doped TMAH for bulk micromachining of silicon,” Microelectronics Journal, 2005.
    [9] K. Biswas, S. Das, D.K. Maurya, S. Kal, and S.K. Lahiri, “Bulk micromachining of silicon in TMAH-based etchants for aluminum passivation and smooth surface,” Microelectronics Journal, 2005.
    [10] M. Tanabe, J. Makinodan, K. Suzuki, Y. Hosokawai, S. Konishi, N. Ozaki and H. Oka, “Development of Micro Channel Array With Detecting Electrodes for Electrophysiological Biomedical Sensor,” IEEE, 2003.
    [11] F. Greve, J. Lichtenberg, K. U. Kirstein, U. Frey and A. Hierlemann, “Perforated CMOS Microchip Platform for Immobilization and Activity Monitoring of Electrogenic Cells,” IEEE, 2005.
    [12] T. Lehnerta and M. A. M. Gijs, “Realization of hollow SiO2 micronozzles for electrical measurements on living cells,” American Institute of Physics vol.81, pp.5063-5065, 2002.
    [13] N. Fertig, M. L. Klau, M. George, R. H. Blick, J. C. Behrends, “Activity of single ion channel proteins detected with a planar microstructure,” American Institute of Physics vol.81, pp.4865-4867, 2002.
    [14] http://www.cytocentrics.com
    [15] www.me.ntou.edu.tw/~lyh
    [16] http://campus.lakeforest.edu/~light/teaching.html
    [17] 莊達人, “VLSI製造技術,” 高立圖書, 台北, 1997.
    [18] 行政院國家科學委員會精密儀器發展中心, “微機電系統技術與應用,” 全華圖書, 新竹市, 2003.
    [19] 林紀甫, “單細胞動作電位量測晶片之研製,” 國立成功大學微機電系統工程研究所碩士論文, 2005.
    [20] 陳弘達, “以微機電技術製作含溫度感測器之微流道系統及兩相流熱傳研究,” 國立成功大學航空太空工程研究所碩士論文, 2005.

    下載圖示 校內:2008-07-12公開
    校外:2008-07-12公開
    QR CODE