簡易檢索 / 詳目顯示

研究生: 陳政豪
Chen, Cheng-Hou
論文名稱: 導電性高分子製作可撓曲式電致變色元件之研究
Flexible Electrochromic Devices Employing Conducting Polymers
指導教授: 溫添進
Wen, Ten-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 101
中文關鍵詞: 可撓曲式電致變色元件
外文關鍵詞: Flexible Electrochromic Devices
相關次數: 點閱:68下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文中採用聚苯胺(PANI)和聚二氧乙基塞吩(PEDOT)來組裝成可撓曲式電致變色元件。論文中分做兩部分來探討,第一部份是在單一電極中,分別針對PANI於不同摻雜物(CSA和PSS)下及PEDOT-PSS本身的電致變色行為進行討論。而第二部分則探討利用此兩種電致變色材料為兩電極組裝而成的可撓曲式電致變色元件,並進行電致變色特性探討。
    (1)單一電極之電致變色行為
      PANI摻雜PSS之後,會形成交聯的構造抑制劣化產物或PANI寡聚物的氧化還原反應進行,改善PANI本身的電化學、電致變色及熱穩定等性質。而這些皆可經由循環伏安掃描、紫外光/可見光光譜、化學分析、熱重分析及導電度測試的結果來獲得證實。PEDOT-PSS本身之應答時間與PANI系統相近,所以適合用來當作PANI之互補電極。
    (2)可撓曲式電致變色元件電致變色行為
      利用聚苯胺以及聚二氧乙基塞吩當作互補電極,聚氧化乙烯(PEO)摻雜LiClO4為高分子電解質,進行可撓曲式電致變色元件之製作,並探討元件特性。元件PES-ITO / PANI-PSS || PEO-PC-LiClO4 || PEDOT-PSS / ITO-PES有較可逆的氧化還原特性(庫倫效率接近100 %)以及較佳之元件穩定度,並且在撓曲的狀態下並不會改變其電致變色特性。

     In these studies, a flexible electrochromic device was fabricated by using PANI and PEDOT as chromic materials. The results and discussions of these studies are presented in two parts.

     In the first part, the evaluations of electrochromic properties of single electrodes (PANI-CSA, PANI-PSS and PEDOT-PSS) are disscussed. In the second part, we discuss the electrochromic properties of a flexible electrochromic device which was tested by the assembling of PANI and PEDOT as chromic materials.
    (1)Electrochromic properties of single electrodes
     The incorporation of the polyelectrolyte (PSS) in PANI affected the electrochemical, electrochromic properties, morphology, and polymer structure of the polymer film as evidenced by the results of cyclic voltammetry, in-situ uv-visible spectroscopy, x-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), thermogravimetric analysis and conductivity measurements. PANI doped with PSS was found to have a crosslink/branched structure and retarded the formation of degradation products or oligormers. The suppressed formation of degradation products can improve the electrochemical, electrochromic and thermal stability.
     According to the analysis of electrochemical and electrochromic properties of PANI-CSA, PANI-PSS and PEDOT-PSS, it prompted us to PANI-CSA/PANI-PSS and PEDOT-PSS as electrodes for fabrication of the complementary electrochromic devices.
    (2)Electrochromic properties of flexible electrochromic devices
     Film of PANI and PEDOT on ITO glass was used as the electrodes with LiClO4 doped gelled polyethylene oxide (PEO) as polymer electrolyte. The electrochromic devices with the following configuration were assembled:
    PES-ITO/PANI(doped CSA or PSS)||PEO-PC-LiClO4||PEDOT-PSS/ITO-PES
     In the discussions of electrochromic properties, we find PES-ITO/PANI-PSS||PEO-PC-LiClO4||PEDOT-PSS/ITO-PES device has better quality, included the interconversion of coloring state and bleaching state is more complete and lead to better stability.
     Further, PANI-PSS used flexible electrochromic device did not change its electrochromic properties that the device is in the bending state.

    中文摘要…………………………………………………………………………………..i 英文摘要………………………………………………………………………………….ii 誌謝……………………………………………………………………………………….iv 目錄………………………………………………………………………………………..v 圖目錄………………………………………………………………………………….viii 表目錄…………………………………………………………………………………..xii 符號及縮寫…………………………………………………………………………….xiii 第一章 緒論………………………………………………………………………………1 1-1 前言…………………………………………………………………………………1 1-2 導電性高分子………………………………………………………………………1 1-2-1 導電性高分子之發展…………………………………………………………1 1-2-2 導電性高分子之分類和導電機制……………………………………………2 1-2-3 導電性高分子之合成方法……………………………………………………5 1-2-3-1 化學聚合…………………………………………………………………5 1-2-3-2 電化學聚合………………………………………………………………6 1-2-4 聚苯胺之介紹…………………………………………………………………8 1-2-4-1 聚苯胺之緣起……………………………………………………………8 1-2-4-2 聚苯胺之結構與聚合機構…………………………………………….10 1-2-4-3 聚苯胺之電化學行為………………………………………………….10 1-2-5 導電性高分子之應用……………………………………………………….12 1-3 導電性高分子之電致變色行為………………………………………………….15 1-3-1 電致變色原理……………………………………………………………….15 1-3-2 導電性高分子應用於電致變色元件的優點……………………………….16 1-3-3 可撓曲式電致變色元件之製作與發展…………………………………….18 1-3-4 電致變色元件之應用……………………………………………………….20 1-4 研究動機………………………………………………………………………….23 第二章 單一電極之電致變色行為和特性分析……………………………………….41 2-1 前言……………………………………………………………………………….41 2-2 實驗部分………………………………………………………………………….42 2-2-1 聚苯胺之合成……………………………………………………………….42 2-2-2 聚苯胺和聚二氧乙基塞吩薄膜之製備…………………………………….42 2-2-3 電化學裝置………………………………………………………………….43 2-2-4 紫外光/可見光光譜…………………………………………………………44 2-2-5 化學分析電子光譜………………………………………………………….44 2-2-6 表面型態…………………………………………………………………….44 2-2-7 熱重分析儀………………………………………………………………….44 2-3 結果討論………………………………………………………………………….45 2-3-1 聚苯胺於不同再摻雜物下之電致變色行為與特性探討………………….45 2-3-1-1 氧化還原特性………………………………………………………….45 2-3-1-2 光譜電化學……………………………………………………………..47 2-3-1-3 電致變色特性………………………………………………………….48 2-3-1-4 化學分析……………………………………………………………….52 2-3-1-5 表面型態分析………………………………………………………….53 2-3-1-6 熱重分析……………………………………………………………….53 2-3-2 聚二氧乙基塞吩之之電致變色行為……………………………………….54 2-3-2-1 氧化還原特性………………………………………………………….54 2-3-2-2 光譜電化學…………………………………………………………….55 2-3-2-3 電致變色特性………………………………………………………….55 2-4 結論……………………………………………………………………………….56 第三章 可撓曲式電致變色元件製作與特性分析…………………………………….73 3-1 前言……………………………………………………………………………….73 3-2 實驗部分…………………………………………………………………………..75 3-2-1 可撓曲式電致變色元件製作……………………………………………….75 3-2-2 元件之氧化還原特性……………………………………………………….75 3-2-3 元件之電致變色特性……………………………………………………….75 3-3 結果討論………………………………………………………………………….76 3-3-1 元件之氧化還原特性……………………………………………………….76 3-2-2 元件之電致變色特性……………………………………………………….77 3-4 結論……………………………………………………………………………….80 第四章 總結與展望……………………………………………………………………..90 4-1 總結……………………………………………………………………………….90 4-2 展望……………………………………………………………………………….92 參考文獻…………………………………………………………………………………..93 自述………………………………………………………………………………………101

    1. C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gua and A. G. MacDiarmid, Phys. Rev. Lett., 39, 1098 (1977).
    2. T. P. McAndrew, TRIP., 5, 7 (1997).
    3. H. Shirakawa, E. J. Louis, S. C. Gua and A. G. Macdiarmid, C. K. Chiang and A. J. Heeger, J. Chem. Soc. Chem. Commun., 16, 578 (1977).
    4. S. Lefrant, L. S. Lichtman, M. Temkin, D. C. Fichten, D. C. Miller, G. E. Whitwell and J. M. Burlich, Solid State Commun., 29, 191 (1979).
    5. R. N. McDonald and T. W. Campbell, J. Am. Chem. Soc., 82, 4669 (1960).
    6. G. A. Lapitskii, S. M. Makin and A. A. Berlin, Vysokomol. Soldin., 9, 1274 (1967).
    7. W. Haertel, G. Kossmehl, G. Maneeke, W. Wille, D. Woehrle and D. Zerpner, Angew. Makromol. Chem., 29, 307 (1973).
    8. G. Kossmehl and Ber. Bunsenges, Phys. Chem., 83, 417 (1979).
    9. L. W. Shacklette, H. Eckhardt, R. R. Chance and R. H. Banghman, J. Chem. Soc. Chem. Commun., 854 (1980).
    10. P. Pfluger and O. B. Street, J. Chem. Phys., 80, 544 (1984).
    11. A. F. Diaz, J. Chem. Soc. Chem. Commun., 635 (1979).
    12. A. F. Diaz, K. K. Kanazawa, J. I. Castillo, J. A. Logan, "Conductive Polymers", (R. B. Seymour, Ed.,) Plenum Press, New York (1981).
    13. E. M. Genies, G. Bidan and A. F. Diaz, J. Electroanal. Chem., 149, 101 (1983).
    14. R. Jansson, H. Arwin, R. Bjorklund and I. Lundstrom, Thin Solid Films., 125, 205 (1980).
    15. A. F. Diaz, A. Matninez, K. K. Kanazawa and M. Salmon, J. Electroanal. Chem., 130, 181 (1980).
    16. G. Tourillon and F. Garnier, J. Electroanal Chem., 135, 173 (1982).
    17. G. Tourillon and F. Gamier, J. Electroanal. Soc., 130, 2042 (1983).
    18. R. J. Waltman, J. Bargon and A.F. Diaz, J. Phys. Chem., 87, 1459 (1983).
    19. J. J. Ohsawa, K. Kaneto and K. Yoshino, Jap. J. App. Phys., 23, L663 (1984).
    20. G. B. Street, T. C. Clarke, R. H. Geiss, V.Y. Lee, A. Nazzal, P. Pflunger and J. C. Scott, J. Phys. (Paris)., C3, 599 (1983).
    21. K. K. Kanazawa, A. F. Diaz, M. T. Krounbi and G.. B. Street, Synth. Met., 4, 119 (1981).
    22. A. F. Diaz and J. A. Logan, J. Electroanal. Chem., 111, 111 (1980).
    23. S. A. Chen and C. C. Tsai, Macromolecules., 26, 2234 (1993).
    24. Y. Wei, J. Tan, A. G. MacDiarmid, J. G. Masters, A. L. Smith and D. Li, JCSCC., 7, 552 (1994).
    25. E. M. Genies and M. Lapkowski, J. Electroanal. Chem., 236, 189 (1987).
    26. K. Sasaki, M. Kaya. J. Yano, A. Kitani and A. Kunai, J. Electroanal. Chem., 215, 401 (1986).
    27. Y. Wei, X. Tang, Y. Sun and W. W. Focke, J. Polym. Sci. Chem. Edn., 27, 2385 (1989).
    28. T. Kobayashi, H. Yoneyama and H. Tamura, J. Electroanal. Chem., Interfacial Electrochem., 177, 281 (1984).
    29. M. Kancko, H. Nagamura and T. Shimora, Makromol. Chem., Rapid Commun., 8, 179 (1987).
    30. Y. Cao, A. Andreatta, A. J. Heeger, and P. Smith, Polymer., 30, 2305 (1989).
    31. A. G. MacDiarmid, S. K. Manohar, J. C. Masters, Y. Sun, H. Weis and A. J. Epstein, Synth. Met., 41-43, 621 (1991).
    32. K. Tzou and R. V. Gregory, Synth. Met., 47, 267 (1992).
    33. Y. Wei, G.-W. Jang and C. C. Chan, J. Polym. Sci. Part-C. Polymer Letters., 28, 219 (1990).
    34. Y. Wei, K. F. Hsueh and G.-W. Jang, Polymer., 35, 3572 (1994).
    35. J. Stejskal, P. Kratochvil, and M. Spirkova, Polym., 36, 4135 (1995).
    36. N. Gospodinova, L. Terlemezyan, P. Mokreva and K. Kossev, Polymer., 34, 2434 (1993).
    37. N. Gospodinova, P. Mokreva and L. Terlemezyan, Polymer., 36, 3585 (1995).
    38. J. Preiza, I. Lundstrom and T. Skothiem, J. Electrochem. Soc., 129, 1685 (1982).
    39. S. L. Mu and D. H. Sun, Synth. Met., 41-43, 3085 (1991).
    40. H. J. Yang and A. J. Bard, J. Electroanal. Chem., 369, 193 (1994).
    41. D. E. Stilwell and S. M. Park, J. Electrochem. Soc., 135, 2254 (1988).
    42. S. L. Mu and J. Q. Kan, Electrochim. Acta., 41, 1593 (1996).
    43. T. J. Kemp, P. Moore and G. R. Quick, J. Chem. Res., 1981, 301 (1981).
    44. A. Malinauskas and R. Holze, Electrochim. Acta., 44, 2613 (1999).
    45. A. Malinauskas and R. Holze, Ber. Besenges. Phys. Chem., 101, 1859 (1997).
    46. A. Malinauskas and R. Holze, Electrochim. Acta., 43, 2413 (1998).
    47. D. M. Mohilner, R. N. Adams and W. J. Argersinger, J. Am. Chem. Soc., 84, 3618 (1962).
    48. J. Bacon and R. N. Adams, J. Am. Chem. Soc., 90, 6596 (1968).
    49. A. F. Diaz and J. A. Logan, J. Electroanal. Chem., 111, 111 (1980).
    50. R. A. Cox and E. Buncel, in The Chemistry of Hydrazo, Azo and Azoxy Groups, S. Patel Ed., Wiley, New York, Part 2., P775 (1975).
    51. E. M. Genies and M. Lapkowski, J. Electroanal. Chem., 236, 199 (1987).
    52. A. G. MacDiarmid, J. C. Chiang, M. Halpern, W. S. Huang, S. L. Mu, N. L. D. Somasiri, W. Wu and S. I. Yaniger, Mol. Liqu. Cryst., 121, 173 (1985).
    53. T. Hjertberg, W. R. Salanek, I. Lundstrom, N. L. D. Somasiri and A. G. MacDiarmid, J. Polym. Sci., Polym. Lett., 23, 503 (1985).
    54. H. Yoon, B. S. Jung and H. Lee, Synth. Met., 41, 699 (1991).
    55. W. W. Focke, C. E. Wnek and Y. Wei, J. Phys. Chem., 91, 5813 (1987).
    56. S. Pekker and A. Janossy, Handbook of conducting polymer, Vol. 1, Marcel Dekker, New York., p. 45-47 1986.
    57. E. M. Genies and S. Picart, Synth. Met., 69, 165 (1995).
    58. 念家富,曾章和,〝有機發光二極體材料與顯示器之應用〞,電子期刊,Vol. 48, P.146, 1999.
    59. A. A. Karyakin, I. A. Maltsev and L. V. Lukachova, J. Electroanal. Chem., 402, 217 (1996).
    60. C. G. Granuvist, E. Hvendano and A. Azens. Thin Solid Films., 442, 201 (2003).
    61. C. G. Granuvist, Handbook of Inorganic Electrochromic Materials, Elsevier, Amsterdam, The Netherlands, 1995, reprinted 2002.
    62. C. G. Granuvist. Solar Energy Mater. Solar Cells., 60, 201 (2000).
    63. C. L. Gaupps, D. M. Welsh, R. D. Rauh and J. R. Reynolds. Chem. Mater., 14, 3964 (2002).
    64. J. Tamimoto, S. Uchida, T. Kubo and Y. Nishikitani. J. Electrochem. Soc., 50, H235 (2003).
    65. K. C. Ho. J. Electrochem. Soc., 139, 1099 (1992).
    66. L. D. Kadam and P. S. Patil. Solar Engery. Mater. Solar Cells., 70, 15 (2001).
    67. C. M. Lampert. Solar Engery. Mater. Solar Cells., 11, 1 (1984).
    68. S. K. Deb, Philos. Mag., 27, 801 (1973).
    69. M. A. Depaoli, A. F. Nogueira, D. A. Machado and C. Longo, Electrochimica Acta., 46, 4243 (2000).
    70. W. A. Gazotti. Jr., G. C. Miceli, A. Geri and M. A. Depaoli. Adv. Mater., 10, 60 (1998).
    71. K. Bange and T. Gambke. Adv. Mater., 2, 10 (1990).
    72. W. A. Gazotti, G. C. Miceli, A. Berlin and M. A. Depaoli, Adv. Mater., 10, 1522 (1998).
    73. E. M. Girotto, M. –A. Depaol, J. Braz. Chem. Soc., 10, 3944 (1999).
    74. F. Dichot, S. Ferrere, R. J. Pitts, B. A. Gregg, J. Electrochem. Soc., 146, 4324 (1999).
    75. D. Cummins, G. Boschloo, M. Ryan, D. Corr, S. Nagaraja and D. Fitzmaurice, J. Phys. Chem. B., 104, 11449 (2000).
    76. G. Boshloo and D. Fitzmaurice, J. Phys. Chem. B., 103, 7860 (1999).
    77. H. W. Heuer, R. Wehrmann and S. Kirchmeyer, Advanced Functional Materials 12., 89 (2002).
    78. P. Chandrasekhar, B. J. Zay, G. C. Birur, S. Rawal, E. A. Pierson, L. Kauder and T. Swanson, Advanced Functional Materials 12., 95 (2002).
    79. A. A.Argun, A. Cirpan and J. R. Reynolds, Adv. Mater., 15, 1338 (2003).
    80. L. B. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik and J. R. Reynolds, Adv. Mater., 12, 481 (2002).
    81. I. Schwendeman, C. L. Guupp, J. M. Hancock, L. B. Groenendaal and J. R. Reynolds, Advanced Function Materials 13., 541 (2003).
    82. E. Smela, Adv. Mater., 16, 11 (1999).
    83. L. M. Huang, T. C. Wen and A. Gopalan, Synth. Met., 130, 155 (2002).
    84. L. M. Huang, T. C. Wen and A. Gopalan, Electrochimica Acta 46., 2463 (2001).
    85. T. C. Wen, L. M. Huang and A. Gopalan, J. Electrochem. Soc., 148, D9 (2001).
    86. S. Taunier, G. Guery, J. –M. Tarascon, Electrochim. Acta 44, 3219 (1999).
    87. K. –C. Ho. Electrochim. Acta 44, 3227 (1999).
    88. K. –C. Ho, L. –C. Chen, C. –C. Lee, Proc. Soc. Photo-Opt. Instrum. Eng., 3788, 120 (1999).
    89. B. P. Jelle, G. Hagen, J. Appl. Electrochem., 29, 1103 (1999).
    90. R. Lechner, L. K Thomas, Solar Energy Mater. Soalr Cells 54, 139 (1998).
    91. X. Zhang, L. Su, Z. Lu, Jap. J. Appl. Phys., 38, 770 (1999).
    92. A. Pennisi, F. Simone, G. Barletta, G. Di Marco, M. LAnza, Electrochim. Acta 44, 3237 (1999).
    93. D. S. Lee, D. D. Lee, H. R. Huang, J. H. Pail, J. S. Huh, J. O. Lim, J. J. Lee, J. Mater. Sci. Mater. Electr., 12, 41 (2001).
    94. J. M. G. Cowie, in : J. R. MacCallum, C. A. Vincent (Eds), Polymer Electrolyte Reviews-1, Elsevier, Essex, 1987, p. 69.
    95. W. Wieczorek, K. Such, Z. Florjanczyk, J. Przyluski, Electrochim. Acta 37, 1565 (1992).
    96. J. L. Acosta, E. Morales, J. Appl. Polym. Sci., 60, 1185 (1996).
    97. S. Kohjiva, S. Takesako, Y. Ykeda, S. Yamashita, Polyme. Bull., 23, 299 (1990).
    98. N. Minichandraiah, L. G. Scalon, R. A. March, B. Kumar, A. K. Sircar, J. Appl. Electrochem., 24, 1066 (1994).
    99. W. A. Gazotti, M. A. Spinace, E. M. Girotto, M. –A. Depaoli, Solid State Ionics 130, 281 (2000).
    100. J. P. Coleman, A. T. Lynch, P. Madhukar and J. H. Wagenknedrt, Solar Energy Mater. Solar Cells., 56, 395 (1999).
    101. J. Liu and J. P. Coleman. Mater. Sci. Eng. A. 286, 144 (2000).
    102. M. O. M. Edwards, G. Boschloo, T. Gruszecki, H. Pettersson, R. Sohlberg and A. Hagfeldt. Electrochim. Acta. 464, 2187 (2001).
    103. G. C. de Vries, Electrochim. Acta. 44, 3185 (1999).
    104. M. Wigginton, Glass in Architecture, Phaidon, London, UK, 1996.
    105. C. M. Lampert. Proc. Soc. Photo-Opt. Instrum. Eng., 3788, 2 (1999).
    106. C. M. Lampert. Proc. Soc. Photo-Opt. Instrum. Eng., 4458, 95 (2001).
    107. C. G. Granqvist. Int. Glass. Rev., 2, 67 (2001).
    108. C. G. Granqvist, Interface. 3, 18 (2001).
    109. A. Azens and C. G. Granqvist. J. Solid State Electrochem., 7, 64 (2003)
    110. A. Azens and C. G. Granqvist. Proc. Soc. Photo-Opt. Instrum. Eng,. 4458, 104 (2001).
    111. K. Bange and T. Gambke. Adv. Mater., 2, 10 (1990).
    112. (a) H. Byker, in Proc. Symposium on Electrochromic Materials II, Vol. 94-2 (Eds. K. –C. Ho. D. A. MacArthur), Electrochemical Society, Pennington, NJ 1994, pp. 3-13. (b) T. F.Guarr. Private communication. C.
    113. P. M. S. Monk, R. J. Mortimer and D. R. Rosseinsky, Electrochromism: Fun-dementias and Applications, VCH. Weinheim 1995.
    114. http://www. Nanomatgroup.com
    115. J. P. Coleman, A. T. Lynch, P. Madhukar and J. H. Wagenknecht. Solar Engery. Mater. Solar Cells., 56, 395 (1999).
    116. M. L. Liu, S. J. Visco and L. C. Dejonghe. J. Electrochem. Soc., 138, 1896 (1991).
    117. M. M. Doeff, M. M. Lerner, S. J. Visco and L. C. Dejonghe. J. Electrochem. Soc., 139, 2077 (1992).
    118. M. L. Liu, S. J. Visco, L. C. Dejonghe. J. Electrochem. Sco., 138, 1891 (1991).
    119. W. A. Gazotti, R. Faez and M. A. Depaoli. J. Electroanal. Chem., 415, 107 (1996).
    120. B. P. Jelle, G. Hagen and S. Nodland. Electrochim Acta., 38, 1497 (1993).
    121. H. W. Heuer, R. Wehrmann, S. Kirchmeyer. Adv. Funct. Mater., 12, No. 2 (2002).
    122. W. G. Li and M. X. Wan. J. Appl. Polym. Sci., 71, 615-621 (1999).
    123. W. C. Chen, T. C. Wen, A. Gopalan. J. Electrochem. Soc., 148, E427 (2001).
    124. K. Hyodo, M. Omae, Y. Kagami. Electrochim. Acta. 36, 357 (1991).
    125. Y. Kang, M. H. Lee, S. B. Rhee. Synth. Met., 52, 319 (1992).
    126. A. Malinauskas, R. Holze. Synth. Met., 97, 31 (1998).
    127. D. DeLongchamp, P. T. Hammond. Adv. Mater., 13, 1455 (2001).
    128. A. G. MacDiarmid, B. D. Humphrey, W. S. Huang. J. Chem. Soc.,
    Faraday Trans. 82, 2385 (1986)
    129. P. H. Aubert, A. A. Argun, A. Cirpan, D. B. Tanner, J. R. Reynolds. Chem. Mater., 16, 2386 (2004).
    130. C. L. Gaupp, D. M. Welsh, R. D. Rahu, J. R. Reynolds. Chem. Mater., 14, 3964 (2002).
    131. Y. Xia, J. M. Wiesinger, A. G. MacDiarmid, A. J. Epstein. Chem. Mater., 7, 443 (1995) .
    132. M. Lampert (Ed), “Large-Area Chromogenics: Materials and Devices for Transmittance Control”, Vols. IS 4 Bellingham, Washington USA.
    133. P. Camurlu, A. Cirpan, L. Toppare. J. Electoanal. Chem., 572, 61 (2004).
    134. L. M. Huang, T. C. Wen, A. Gopalan. Mater. Lett., 57, 1765 (2003).
    135. C. Y. Yang, M. Reghu, A. J. Heeger, Y. Cao. Synth. Met., 79, 27 (1996).
    136. The Merck index, 9th ed.; Merck & Co. Inc.: USA, pp. 1735, 1976.
    137. M. Lefebvre, Z. Qi, D. Rana, P. G. Pickup. Chem. Mater., 11, 262 (1999).
    138. Q. Pei, G. Zuccarello, M. Ahlskog, O. Inganas. Polymer., 35, 1347 (1994).
    139. D. Mecerreyes, R. Marcilla, E. Ochoteco, H. Grande, J. A. Pomposo, R. Vergaz and J. M. SanchezPena. Electrochim. Acta., 49, 3555-3559 (2004).
    140. K. Naoi, K. Kawase and Y. Inoue. J. Electrochem. Soc., 144, L170 (1997).
    141. K. Naoi, M. Menda, H. Ooike and O. Oyama. J. Electroanal. Chem., 318, 395 (1991).
    142. N. Oyama, T. Tatsuma, T. Sato and T. Sotomura. Nature (London)., 373, 598 (1995).
    143. D. M. Deleeuw, M. M. J. Simenon, A. R. Brown and R. E. F. Einerhand. Synth. Met., 87, 53 (1997).
    144. M. Josowicz and J. Janata, Anal. Chem., 58, 514 (1986).
    145. R. A. Bull, F. R. Ran and A. J. Bard. J. Electrochem. Soc., 131, 687 (1984).
    146. W .A. Gazotti, G. Casalboremiceli, S. Mitzakoff, A. Grei, M. C. Gallazzi and M. A. Depaoli. Electrochim. Acta., 44, 1965 (1999).
    147. S. K. Deb. Sol. Eng. Mater., 25, 327 (1992).
    148. C. G. Granqvist. Solid State Ionics., 53, 479 (1992).
    149. B. Scrosati, Laminated electrochromic displays and windows, in: B. Scrosati (Ed.), Applications of Electroactive Polymers, Chapman & Hall, London, 267 (1993).
    150. E. A. R. Duck and M. A. Depaoli. Adv. Mater., 4, 287 (1994).
    151. E. A. R. Duck, M. A. Depaoli and M. Mastragostino. Adv. Mater., 5, 650 (1993).
    152. E. L. Tassi, M. A. Depaoli, S. Panero and B. Scrosati. Polymer., 35, 565 (1994).
    153. D. DeLongchamp and P. T. Hammond. Adv. Mater., 19, 13 (2001).

    下載圖示 校內:立即公開
    校外:2005-06-29公開
    QR CODE