簡易檢索 / 詳目顯示

研究生: 朱泳甄
Chu, Yung-Chen
論文名稱: F-35B偏擺尾噴管的機構設計、運作模擬與3D列印
F-35B's thrust vectoring mechanism design,operation simulation, and 3D printing.
指導教授: 楊憲東
Yang, Ciann-Dong
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系碩士在職專班
Department of Aeronautics & Astronautics (on the job class)
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 177
中文關鍵詞: 三軸承旋轉管尾噴嘴(3BSD)垂直/短場起降(V/STOL)3D列印CAD建模
外文關鍵詞: Three-Bearing Swivel Duct (3BSD), Vertical/Short Take-Off and Landing (V/STOL), 3D printing, CAD modelin
相關次數: 點閱:72下載:30
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在研究三軸承旋轉管尾噴嘴(3-Bearing Swivel Duct, 3BSD)的設計與應用,這是實現垂直/短場起降(Vertical/Short Take-Off and Landing, V/STOL)飛機的關鍵技術之一。在現今3D列印技術日益成熟的背景下,本研究通過建立3BSD的CAD建模,模擬其旋轉動作,並使用3D列印技術進行模型製作與組裝,探索其設計原理和應用前景。
    首先,本文回顧了3BSD尾噴嘴的發展歷程及其在不同飛行器上的應用,並分析了結構和工作原理。接著,詳細介紹了3BSD尾噴嘴的設計過程,包括噴嘴形狀和尺寸的設計、驅動結構的設計以及運作模擬。在模擬部分,我們使用SOLIDWORKS Motion和Flow Simulation軟體對3BSD尾噴的運動和流體動力學進行了模擬分析,研究了旋轉角度及對流場、流速和壓力分佈的影響。研究結果顯示,3BSD尾噴嘴在不同旋轉角度下能有效調整推力方向,滿足V/STOL飛機的需求。通過3D列印技術製作的模型成功展示了3BSD尾噴嘴的結構和功能,為未來V/STOL飛機的設計提供了有價值的參考。

    This thesis aims to study the design and application of the Three-Bearing Swivel Duct (3BSD) nozzle, which is a key technology for achieving Vertical/Short Take-Off and Land-ing (V/STOL) in aircraft. With the rapid advancement of 3D printing technology, this re-search explores the design principles and application prospects of the 3BSD nozzle by estab-lishing a CAD model, simulating its rotational motion, and creating a physical model through 3D printing.

    Firstly, the thesis reviews the development history of the 3BSD nozzle and its applications in various aircraft, analyzing its structure and working principles. Then, it details the design process of the 3BSD nozzle, including the design of its shape and dimensions, the design of its drive structure, and the operation simulation. In the simulation section, SOLIDWORKS Motion and Flow Simulation software were used to perform dynamic and fluid dynamics simulations of the 3BSD nozzle, studying the effects of rotational angles on flow field, ve-locity, and pressure distribution. The research results indicate that the 3BSD nozzle can ef-fectively adjust thrust direction at different rotational angles, meeting the requirements of V/STOL aircraft. The model created using 3D printing technology successfully demonstrated the structure and functionality of the 3BSD nozzle, providing valuable references for the de-sign of future V/STOL aircraft.

    摘要 I ENGLISH EXTENDED ABSTRACT II 致謝 V 目錄 VI 表目錄 IX 圖目錄 IX 符號表 XVI 第1章 緒論 1 1.1 背景及文獻回顧 1 1.2 研究動機 5 1.3 論文架構 6 第2章 三軸旋轉向量噴管基本原理與設計 9 2.1 三軸承推力向量噴管基本原理 9 2.2 噴管系統結構與噴管主體結構設計 11 2.2.1 3BSD管道幾何描述 12 2.2.2 逆運動學控制規律 15 2.2.3 噴管型狀與尺寸設計 18 2.3 3BSD噴管的驅動結構設計 21 2.3.1 3BSD噴管的動作過程 21 2.3.2 齒輪旋轉帶動3BSD結構 23 2.3.3 齒輪的種類、轉速比和迴轉方向 24 2.3.4 齒輪各部名稱及計算公式 26 2.3.5 齒輪設計 31 2.4 噴管主體結構 36 第3章 3BSD運作模擬及流體分析 38 3.1 SOLIDWORKS MOTION 38 3.2 模型運作模擬 42 3.2.1 模型材料設置及零件接觸 42 3.2.2 馬達旋轉角度設置及計算 46 3.2.3 齒輪結合與齒數比設定 56 3.3 3BSD旋轉角度對流場的影響 61 3.3.1 SOLIDWORKS Flow Simulation 62 3.3.2 流速分佈及變化 64 3.3.3 壓力分佈 71 第4章 3D列印與模型組裝 76 4.1 3D列印概述 76 4.1.1 3D列印起源及發展 76 4.1.2 3D列印在航空領域的應用 77 4.1.3 3D列印的工作原理和流程 78 4.2 CAD軟體建立F-35B偏擺尾噴管的模型 80 4.3 3BSD模型列印 82 4.3.1 3D列印材料選擇 83 4.3.2 3D列印過程 84 4.3.3 3D列印後處理 94 4.3.4 PLA材料列印常見問題 97 4.4 3BSD模型組裝 99 4.4.1 硬體材料 99 4.4.2 3BSD尾噴模型組裝 100 第5章 系統控制設計及模型運作 103 5.1 電子機械系統操作方塊圖 103 5.2 人機介面設計與操作 104 5.3 PLC程式控制設計 105 5.1.1 PLC計算公式 105 5.1.2 脈波計算 114 5.1.3 PLC馬達控制 117 5.1.4 溢位(Overflow) 125 5.4 系統配置與模型運作 127 5.4.1 配電盤配置 127 5.4.2 模型總成的裝配 135 5.5 模型運作 135 第6章 結論 142 6.1 結果與討論 142 6.2 未來研究方向 143 參考文獻 146 附錄A 3BSD逆運動學公式推導 150 附錄B 品質守恆定律推導 156 附錄C 動量守恆定律推導 157 附錄D 能量守恆定律推導 159

    [1] Sattar, S. A., H. Stargardter, and D. G. Randall. "Development of JT8D Turbofan Engine Composite Fan Blades." Journal of Aircraft, vol. 8, no. 8, 1971, pp. 648-651.
    [2] "F35B關鍵技術來自雅克141?" Read01, https://read01.com/zhtw/4GjaLQL.html#google_vignette. Accessed 29 Feb 2024.
    [3] Jack, Britt. "Jet pipe arrangements for jet propulsion engines." U.S. Patent No. 2,933,891. 26 Apr. 1960.
    [4] Kopp, Gerhard, and Gero Otto Madelung. "Swivelable jet nozzle, intended especially for vertical take-off andshort take-off planes." U.S. Patent No. 3,443,758. 13 May 1969.
    [5] Kurti, Alexander, and Richard W. Batt. "Planetary gear system drive mechanism." U.S. Patent No. 3,485,450. 23Dec. 1969.
    [6] Nash, Dudley O. "Swivelable jet nozzle." U.S. Patent No. 3,687,374. 29 Aug. 1972.
    [7] "洛克希德.馬丁公司X-35B推進系統." 圖片取自:https://archive.aoe.vt.edu/mason/Mason_f/JSFHosder.pdf. Accessed 29 Feb. 2024.
    [8] Barhydt, J., Carter, H., and Weber, D., "Subsystem Integration Technology (SUIT) Phase I," WL-TR-93-3031,July 1993.
    [9] Allen, F. J. "Bolt Upright: Convair's and Lockheed's VTOL Fighters." Air Enthusiast, vol. 127, 2007, pp. 13-20.
    [10] Bevilaqua, P. M. "Joint Strike Fighter Dual-Cycle Propulsion System." Journal of Propulsion and Power, vol. 21, no. 5, 2005, pp. 778-783.
    [11] Mason, J. R. "F-35 S/VTOL Aircraft Performance Model Validation of Short Take-off Flight Test Data." 2013 International Powered Lift Conference. Reston, VA: AIAA, 2013.
    [12] Maddock, Ian, et al. "The Quest for Stable Jet Borne Vertical Lift: ASTOVL to F-35 STOVL." AIAA Centennial of Naval Aviation Forum: 100 Years of Achievement and Progress, 2011.
    [13] Counts, Mark A., et al. "F-35 Air Vehicle Configuration Development." 2018 Aviation Technology, Integration, and Operations Conference, 2018.
    [14] Neil, M. "A Flexible Jet Fighter." Innovation, vol. 10, 2009, pp. 21–27.
    [15] Gregory, P. W., and David A. A. "X-35B STOVL Flight Control Law Design and Flying Qualities." Biennial International Powered Lift Conference and Exhibit, Wil-liamsburg, 2002, pp. 1–13.
    [16] Ma, Tielin, et al. "Three-dimensional Flight Envelope for V/STOL Aircraft with Mul-tiple Flight Modes." Aerospace, vol. 9, no. 11, 2022, p. 691.
    [17] Louthan, J. D. "Impact of Engine Cycle Parameters on V/STOL Type A Configura-tion and Commonality." SAE Transactions, 1977, pp. 3370-3386.
    [18] Zhou, Zan, et al. "Design of Thrust Vectoring Vertical/Short Takeoff and Landing Aircraft Stability Augmentation Controller Based on L1 Adaptive Control Law." Symmetry, vol. 14, no. 9, 2022, p. 1837.Banke, J. "3D printing offers mul-ti-dimensional benefits to aviation." (2018).
    [19] Karkun, Rahul, and Ravi Dharmalingam. "Exploring the Customization Potential of 3D Printing in Aviation." Aviation Accidents, vol. 5, no. 3, 2022, pp. 45-58.
    [20] Kalender, Caner, et al. "Application of 3D Printing in the Prototyping of Aircraft Parts: Design and Simulation of F-35B Nozzle." 3DPrint, vol. 10, no. 4, 2023, pp. 210-225.
    [21] "F-35B 噴管飛行模式偏轉示意圖." 圖片取自https://pse.is/5zpfcy. Accessed 10 Mar 2024.
    [22] "F-35B的F135渦輪扇風動機結構." 圖片取自https://pse.is/5zpfcy. Accessed 10 Mar 2024.
    [23] Green, Richard, Peter Frost, and Michael Annear. "Method of Manufacturing a Duct for a Gas Turbine Engine." U.S. Patent No. 7,866,041, 11 Jan. 2011.
    [24] Wang, XiangYang, et al. "Coordination Control Strategy Based on Characteristic Model for 3-Bearing Swivel Duct Nozzles." Science China Technological Sciences, vol. 57, 2014, pp. 2347-2356.
    [25] "SOLIDWORKS 使用說明." 取自https://help.SOLIDWORKS.com/2023/chinese/SOLIDWORKS/motionstudies/c_Motion_Analysis.htm. Accessed 3 Apr. 2024.
    [26] Gear, C. William. Numerical initial value problems in ordinary differential equa-tions. Prentice-Hall series in automatic computation (1971).
    [27] Ambrosi, Adriano, and Pamela Martin. "3D Printing Technologies for Electrochemical Applications." Chemical Society Reviews, vol. 45, no. 10, 2016, pp. 2740-2755.
    [28] Su, Amanda, and Subhi J. Al'Aref. "History of 3D Printing." 3D Printing Applications in Cardiovascular Medicine, Academic Press, 2018, pp. 1-10.
    [29] Sachs, Emanuel, et al. "Three-Dimensional Printing: The Physics and Implications of Additive Manufacturing." CIRP Annals, vol. 42, no. 1, 1993, pp. 257-260.
    [30] Jones, Rhys, et al. "RepRap–The Replicating Rapid Prototyper." Robotica, vol. 29, no. 1, 2011, pp. 177-191.
    [31] Yin, Yan, et al. "Development of 3D Printing Technology and Current Status of SLM Technology Defect Control." China Welding, vol. 29, no. 3, 2020, pp. 9-19.
    [32] "Manufacturing Milestone: 30,000 Additive Fuel Nozzles." GE Aerospace News, 4 Oct. 2018, https://www.geaerospace.com/news/articles/manufacturing/manufacturing-milestone-30000-additive-fuel-nozzles. Accessed 16 June 2024.
    [33] "Airbus and Autodesk Create Largest 3D Printed Airplane Cabin Component." Man-ufacturing Digital, 16 May 2020, https://manufacturingdigital.com/technology/airbus-and-autodesk-create-largest-3d-printed-airplane-cabin-component. Accessed 16 June 2024.
    [34] "塑膠射出成型 - PLA." 盛鑫塑膠, 圖片取自https://www.sunghsin.com/msg/plastic-injection-PLA.html. Accessed 16 June 2024.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE