| 研究生: |
羅人豪 Lo, Jen-Hao |
|---|---|
| 論文名稱: |
耐火試驗爐流場與防火門熱傳現象之數值模擬 Numerical Simulation of Flow Field in Fire-Resistence Test Furance and Heat Transfer for Fire Door |
| 指導教授: |
林三益
Lin, San-Yih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 124 |
| 中文關鍵詞: | 耐火試驗爐 、防火門 |
| 外文關鍵詞: | fire-resistence test furance, fire door |
| 相關次數: | 點閱:159 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在利用ANSYS CFX軟體來進行門牆構件體耐火試驗爐之內部流場以及以試驗爐加熱之防火門受熱後溫度變化的數值模擬,以建立可與實驗比對並提供可靠參考的結果。內容主要探討加溫過程中爐內氣體之壓力、均溫性等,並在考慮傳導、對流、熱輻射效應之情形下,防火門加熱後非受熱面之溫度變化。
在程式驗證部分,則選取了幾個例子,如三維空穴流、三維自然對流等,並與文獻來做比對,以驗證ANSYS CFX在流體對流及熱傳遞性上之準確性與可靠性。
本研究實際的物理模型是以國立成功大學防火安全研究中心所提供的試驗爐來建立,其尺寸是3.0m(面寬)*3.1m(高度)*1.05m(深度),而防火門尺寸是1170mm(門樘寬度)×2100mm(門樘高度)×64mm(門扇厚度)。最後將以上之模型之數值模擬結果與實驗數據做一比對。
分析模擬結果可以發現試驗爐內的溫度與壓力均符合法規,且與實驗數據相去不遠,也發現均溫性與氣流之流向有很大的關係。而在門體部分,最後模擬結果也很接近實驗數據。
This paper uses Ansys CFX to analyze the flow field in a fire-resisitence furnace and the heat transfer for a fire door. One can numerically compute the air temperature and pressure in the furnace, investigate the temperature distribustion on the unexposed side of a fire door.
First,two cases are tested to verify the reliability and accuracy of CFX . These two problems are three-dimensional cavity flow and three-dimensional natural convection. The results are compared well with the known data .Second,the fire-resistence testing furnace model is (width)3.0m x (height)3.1m x (depth)1.05m , the furance injects the high temperature gas from the inlet according to a elevated temperature curve, then the temperature distribution and pressure distribution in the furnace are simulated.The numerical results are compared well with the experimental data.
Finally,The fire door chosen is (width) 1170mm x (height) 2100mm x (thickness) 64mm , after two hours of simulation , the temperature distribution on the unexposed side are computed
[1]Chinese National Standards CNS11227,“Method of Fire Resistance Test for Fire Door of Buildings”, The Bureau of Standards, Metrology and Inspection, M.O.E.A. ,Taiwan, 2002.
[2]ANSYS CFX, Inc. ANSYS 12.1,2009
[3]J.Y.R. Liew,L.K. Tang,Tore Holmaas, and Y.S. Choo, “Advanced Analysis for the Assessment of Steel Frames in Fire,” Journal of Constructional Steel Research, Vol. 47, pp. 19-45, 1998.
[4]International Standard ISO 834-1,“Fire resistance tests-Elements of building construction-Part 1:Grneral requirements”,1999.
[5]J.A. El-Rimawi,I.W. Burgess,R.J. and Plank,“Studies of the Behavior of Steel Subframes with Semi-Rigid Connections in Fire,” Journal of Constructional Steel Research, Vol. 49, pp. 83-98, 1999.
[6]J.C. Zhao, “Application of the Direct Iteration Method for Non-linear Analysis of Steel Frames in Fire,” Fire Safety Journal, Vol. 35, pp. 241-255, 2000.
[7]M. Tabaddow, P.D. Gandhi, and G. Jones,“Thermo-mechanical analysis of fire doors subjected to a fire endurance test”,Journal of Fire Protection Engineers, Vol. 19(1),pp.51-71,2009.
[8]UL 10C,“UL Standard for Safety Positive Pressure Fire Tests of Door Assemblies”,First Edition, Underwriters Laboratories Inc. Northbrook, IL USA,1998.
[9]L.W. Chen,L.Y. Chen,”Thermal post-buckling behaviors of laminated composite plates with temperature-dependent properties.” , Composite structures, 19, pp.267-283, 1991
[10]Y. Sumino, O. L. Anderson, and I. Suzuki, Temperature Coefficients of Elastic Constants of Single Crystal MgO between 80 K and 1300 K, Physics and Chemistry of Minerals, Vol. 9, pp. 38-47, 1983
[11]T. Ohmura, M. Tsuboi, M. Onodera, and T. Tomimura, Specific Heat Measurement of High Temperature Thermal Insulations by Drop Calorimeter Method, Int. J. Thermophysics, Vol. 24, No. 2, pp.559-575
2003.
[12]何崇瑋,防火門扇在不同材質下之阻熱性與變形量分析,2012
[13]陳彥章,防火安全用防火爐流場之數值模擬,2008
[14]杜博文,循環式防火爐流場之數值分析,2009
[15]王顥宇,高塔式防火爐流場之數值分析,2010
[16]International Standard ISO 834-1, “Fire resistance tests-Elements of building construction-Part 1: General requirements”, 1999.
[17] British Standards Institution BS476, “Fire tests on building materials and structures- part 20 : Methods for determination of the resistance of element of construction(general principles)”, 1987.
[18] American Society for Testing and Materials Standard : ASTM E152 “Methods of Fire Tests of Door Assemblies”, 1995.
[19] National Fire Protection Association: NFPA 252, “Standard Methods of Fire Tests of Door Assemblies”, 2008.
[20] JIS A1311,“Method of Fire Protecting Test of Fire Door for Buildings”, Japan , 1994.
[21] Draft for public Comment AS 1530-4, “Methods for fire tests on building materials, components and structures-Part 4:Fire-resistance tests of elements of building construction”, Draft for Public Comment Australian
Standard , 2004.
[22] National Fire Protection Association: NFPA 252, “Standard Methods of Fire Tests of Door Assemblies”, 2008.
[23]CEN, Eurcode 1:Action on structures part 1.2:General Action - Actions on structures exposed to fire BS EN 1991 - 2:2002,Brussels: CEN,European Committee for Standardissation,2002.
[24] A.F. Mills, Basic heat and mass transfer,Irwin,UAS,1995.
[25]C.Shu,L.Wang, and Y.T.Chew, ”Numercial computation of three-dimensional incompressible Navier-Stokes equation in primitive variable from DQ method ”Int.J.Numer.Meth.Fluids,Vol 43, pp.345-368, 2003
[26]T.Fusegi,J.M.Hyun,K.Kuwahara,and B.Farouk,”A Numercial Study of Three-Dimensional Natural Convenction in a Differentially Heated Cubical Enclosure”Int.Journal.Heatand Mass Transfer,Vol34, No76, pp.1543-1557, 1990
[27]Leonardo da Vinci Pilot Project,”Implementation of Eurocodes : Development of skills facilitating implementation of Eurocodes. Handbook5 Design of buildings for the fire situation ” , 2005