簡易檢索 / 詳目顯示

研究生: 葉修華
Yeh, Shiu-Hwa
論文名稱: 探討NF-kB在恐懼記憶形成過程中所扮演的角色
Involvement of NF-kB in fear potentiated startle
指導教授: 簡伯武
Gean, Po-Wu
學位類別: 博士
Doctor
系所名稱: 醫學院 - 基礎醫學研究所
Institute of Basic Medical Sciences
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 130
中文關鍵詞: 麩氨酸受體長期增益現象記憶
外文關鍵詞: CBP, HDAC, GluR1, acetylation, PI-3 kinase, NF-kB
相關次數: 點閱:79下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   學習與記憶為生物體生存的必要能力,亦為生物體發展的動力;然而,錯誤的恐懼經驗往往會造成焦慮等負面的結果。焦慮症狀的產生,乃生物體對於恐懼經驗的過度學習與記憶所導致,以此情緒表現所衍生的精神疾病更是目前人類所處環境的一大危害及負擔。因此,恐懼記憶形成機制的探討,實為解決焦慮症狀最直接而明顯的途徑。

      大腦杏仁核體對於恐懼記憶的表現及誘發扮演著重要角色。在研究恐懼記憶形成機制多以杏仁核體的腦神經細胞為主體。其研究成果除了對於腦部運作的基本功能有所了解外,也可以應用在一些精神官能疾病,神經損傷,神經退行性病變中。神經細胞中有幾種物質參與記憶的形成,包括N-Methyl-D-aspartic Acid (NMDA) receptor,protein kinase A (PKA),mitogen-activated protein kinase (MAPK),cAMP response element binding protein (CREB)等等,而它們的相關訊息傳遞路逕也有些了解。除了前述物質之外,目前發現NF-kB的活化與一些神經損傷及與記憶有關。本研究首先探討NF-kB在恐懼記憶模式中活化的程度,以及相關活化的因子。結果發現,在高頻電刺激(TS)及直接活化PKA等離體刺激下,或是恐懼學習後的活體模式中,都可以造成IKK的酵素活性快速上升,IkB-a的表現量快速減少。在此同時,NF-kB p50次體進入細胞核,NF-kB的DNA binding activity也顯著的增加,經由supershift assay也發現此時活化的NF-kB複合體主要為 p50/p65異合體型式。我們也發現細胞外訊息主要經由NMDA receptor,PKA,PI-3 kinase等訊息傳遞路徑造成IKK活化,IkB-a被分解,最後促使NF-kB在細胞質活化。這些NF-kB相關的訊號傳遞只局限於杏仁核體(amygdala)內,在其他腦區如海馬迴(hippocampus)及小腦區(cerebellum)則不改變,顯示此一現象只發生在與恐懼記憶有關的腦區中。此外,由非配對對照組(unpair control group)中觀察,給予不經由配對的光及電擊刺激,並不能促使NF-kB的DNA binding activity上升,顯示NF-kB與制約條件的學習有密切的正相關性。

      在大鼠腦內杏仁核注射NF-kB活化抑制劑,如TPCK,TLCK或是kB decoy DNA後,可明顯抑制恐懼記憶的形成,顯示NF-kB的活化與記憶的形成有密切的關聯性。另外,我們也發現細胞核中CREB與NF-kB似乎有交互作用的產生,此現象可能促進CREB及NF-kB與相關DNA binding sequence的結合能力,並導致相關基因調控的改變。

      NF-kB的活性可被其乙醯化(acetylation)程度所調控,此現象主要決定於HAT (histone acetyltransferase)及HDAC (histone deacetylase)的活性變化,這種調控會因不同的細胞模式而有所改變。接下來我們的研究發現,恐懼學習能夠促使HAT (histone acetyltransferase)活性增加,NF-kB p65和CBP的交互作用增強,以及促使p65乙醯化程度增加,而此現象僅見於杏仁核體。另一方面,抑制HDAC3的酵素活性會降低p65與HDAC3的交互作用,進而增強p65乙醯化的程度,增加NF-kB 的DNA binding activity,並且增強大鼠的恐懼反應,以及離體模式中LTP (long-term potentiation)的表現。若只單獨給予HDAC抑制劑,而不合併處理活體恐懼學習或是離體活化PKA等刺激,上述增強情形則消失,而且此現象可被kB decoy DNA干擾,顯示HDAC抑制劑的效果確實是直接經由特異性的調控NF-B的功能所致。最後,由非配對對照組(unpair control group)中觀察,給予不經由配對的光及電擊刺激,並不能促使p65乙醯化的表現增加。綜合以上,在杏仁核體中,由HDAC所媒介的去乙醯化功能影響NF-kB在細胞核中的活性變化。

      與NF-kB有關的訊息傳遞路徑到底如何改變神經塑性?近期研究指出,GluR (glutamate receptor)是快速突觸傳導及突觸間信號傳遞的主要媒介。而其中的AMPA receptor則在神經細胞突觸的動態平衡,與突觸間神經電生理信號的增強或減弱有非常密切的相關性。包含有GluR1/2次體的AMPA receptor在神經細胞膜上的表現與突觸活性有密切相關性。我們利用細胞膜蛋白質標定法及粹取突觸神經體(synaptoneurosome),發現大鼠經過恐懼訓練之後,杏仁核體細胞膜及突觸中GluR1次體的表現有明顯增加的趨勢。而NMDA receptor拮抗劑(D-APV),PI-3 kinase抑制劑(wortmannin),MEK抑制劑(U0126),蛋白質合成抑制劑(anisomycin)皆可以消減GluR1的表現。另一方面,投予HDAC抑制劑(Tricostastin A)會增強細胞膜上GluR1的表現,但此現象會被NF-kB抑制劑(helenalin)及anisomycin所阻斷。在恐懼訓練後給予一連串制約性刺激(conditional stimulation),即消減記憶(memory extinction)步驟,也可以壓抑GluR1次體增加。而此現象也被D-APV及anisomycin所反轉。在離體實驗中,高頻電刺激(TS)能增加杏仁核體腦薄片中細胞膜上的GluR1次體,合併處理低頻電刺激(LFS)則消除此現象。總合以上結果,大鼠恐懼記憶的表現及神經細胞突觸塑性的變化,與細胞膜上GluR1的表現呈現高度相關性。而與GluR1在細胞膜上表現有關的蛋白質,則很可能是參與恐懼記憶的基因表現之一。

      Learning and memory is the basis for the survival and development of creatures, however, aversive experience of fear leads to anxiety. With the changes of the society, anxious complications happen commonly in the modern life. Therefore, the problems of anxiety can be solved by an understanding of emotional fear in terms of its underlying cellular and molecular mechanisms.

      NF-kB, originally identified as a regulator of immunoglobulin k light chain gene expression, is a DNA-binding factor that functions as a dimer. Recent studies indicate that NF-kB played an important role in the synaptic plasticity. Therefore, we used fear-potentiated startle paradigm to identify the role of NF-kB signaling pathway in memory formation. The results show that p50 and p65 subunits of NF-kB were selectively activated in the amygdala following fear conditioning through the signal-induced activation of PI-3 kinase, IKK and subsequent proteolytic degradation of IkB-a in the cytoplasm. This allows NF-kB to translocate into the nucleus where it binds to specifickB DNA consensus sequences in the enhancer region ofB-responsive genes. Pharmacological blockade of NF-kB impairs fear memory in a dose-dependent manner. In in vitro slice preparation, bath application of kB decoy DNA attenuates tetanus-induced L-LTP in the amygdala. Therefore, a novel role of NF-kB in fear conditioning and synaptic plasticity has been demonstrated here.

      CBP/p300 contains histone acetyltransferase that has been implicated in the regulation of gene expression. Recent studies show that the action of NF-kB is regulated by reversible acetylation. We found that the expression of acetyl-p65 subunit was selectively increased in the amygdala following fear conditioning through the increase associated with CBP (CREB binding protein). Pharmacological blockade of histone deacetylase further increase DNA binding activity of NF-kB and fear memory in a dose-dependent manner. In in vitro slice preparation, bath application of histone deacetylase inhibitor increases the degree of forskolin-induced L-LTP in the amygdala. Therefore, a novel role of NF-kB in fear conditioning and synaptic plasticity has been demonstrated. These results suggest that HDAC-mediated deacetylation functions as an intranuclear molecular switch culminating in the termination of NF-kB transcriptional response.

      AMPA receptors mediate the majority of the fast excitatory synaptic transmission. One recently identified mechanism contributing to synaptic plasticity is the regulated trafficking of AMPA receptors in and out of synapses. Receptors with long cytoplasmic tails (GluR4/2 and GluR1/2) are driven into synapses in an activity-dependent manner. Our results show that synaptoneurosome membrane expression of GluR1 was selectively increased in the amygdala following fear conditioning through the signal-induced activation of PI-3 kinase, NMDA receptor and NF-kB. Pharmacological blockade of histone deacetylase further increases conditioning-induced membrane expression of GluR1 in NF-kB-dependent manner. Furthermore, fear training-induced increase in GluR1 was reversed when animal was exposed to the memory extinction protocol. The reversal of GluR1 increase was also blocked by D-APV and anisomycin treatment. The similar pattern of changes in GluR1 was observed in the amygdala slices after delivery of high-frequency stimulation (HFS) or HFS followed by low-frequency stimulation (LFS) that elicited long-term potentiation (LTP) and depotentiation respectively. These results suggest that long-term synaptic plasticity and memory formation are correlated with the changes in modification of GluR1 expression, and surface expression of GluR1 is a potential effector that contributes at least in part to the expression of fear memory.

    中文摘要 Pg.3 英文摘要 Pg.7 縮寫檢索表 Pg.10 第一章 緒論 Pg.12 第二章 研究方法及材料 Pg.21 第三章 NF-B在驚嚇恐懼記憶中所扮演的角色 Pg.42 第四章 NF-B乙醯化促進長期而非短期恐懼記憶的保持 Pg.62 第五章 杏仁核體突觸細胞膜上GluR1次體的表現與恐懼記憶 的關聯性 Pg.80 第六章 結論 Pg.102 參考文獻 Pg.106 著作 Pg.125 圖表索引 Pg.127

    Adolphs, R., Tranel, D., Damasio, H., amd Damasio, A.R. (1994) Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature 372: 669-672.

    Albensi, B.C., and Mattson, M.P. (2000) Evidence for the involvement of TNF and NF-kappaB in hippocampal synaptic plasticity. Synapse 35: 151-159.

    Arenzana-Seisdedos, F., Thompson, J., Rodriguez, M.S., Bachelerie, F., Thomas, D., and Hay, R.T. (1995) Inducible nuclear expression of newly synthesized I kappa B alpha negatively regulates DNA-binding and transcriptional activities of NF- kappa B. Mol. Cell Biol. 15: 2689-2696.

    Arenzana-Seisdedos, F., Turpin, P., Rodriguez, M., Thomas, D., Hay, R.T., Virelizier, J.L., and Dargemont, C. (1997) Nuclear localization of I kappa B alpha promotes active transport of NF-kappa B from the nucleus to the cytoplasm. J. Cell Sci. 110: 369-378.

    Baeuerle, P.A., and Henkel, T. (1994) Function and activation of NF-kappa B in the immune system. Ann. Rev. Immunol. 12: 141-179.

    Bailey, D.J., Kim, J.J., Sun, W., Thompson, R.F., and Helmstetter, F.J. (1999) Acquisition of fear conditioning in rats requires the synthesis of mRNA in the amygdala. Behav. Neurosci. 113: 276-282.

    Balasubramanyam, K., Swaminathan, V., Ranganathan, A., and Kundu, T.K. (2003) Small Molecule Modulators of Histone Acetyltransferase p300. J. Biol. Chem. 278: 19134-19140.

    Baldwin, Jr.A.S. (1996) The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu. Rev. Immunol. 14: 649-681.

    Barco, A., Alarcon, J.M., and Kande, E.R. (2002) Expression of constitutively active CREB protein facilitates the late phase of long-term potentiation by enhancing synaptic capture. Cell 108: 689-703.

    Barrionuevo, G., Schottler, F., and Lynch, G. (1980) The effect of repetitive low frequency stimulation on control and ‘potentiated’ synaptic responses in the hippocampus. Life Sci. 27: 2385-2391.

    Beattie, E.C., Stellwagen, D., Morishita, W., Bresnahan, J.C., Ha, B.K., Zastrow, M.V., Beattie, M.S., and Malenka, R.C. (2002) Control of synaptic strength by glial TNF. Science 295: 2282-2285.

    Beg, A.A., Finco,T.S., Nantermet, P.V., and Baldwin, A.S. (1993) Tumor necrosis factor and interleukin-1 lead to phosphorylation and loss of I kappa B alpha: a mechanism for NF-kappa B activation. Mol. Cell Biol. 13: 3301-3310.

    Bliss, T.V., and Collingridge, G.L. (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361: 31-39.

    Blondeau, N., Widmann, C., Lazdunski, M., and Heurteaux, C. (2001) Activation of the Nuclear Factor- B Is a Key Event in Brain Tolerance. J. Neurosci. 21: 4668-4677.

    Bourchouladze, R., Frenguelli, B., Blendy, J., Cioffi, D., Schuyz, G., and Silva, A.J. (1994) Deficient long-term memory in mice with a targeted mutation of the cAMP-response element-binding protein. Cell 79:59-68

    Boyes, J., Byfield, P., Nakatani, Y., and Ogryzko, V. (1998) Regulation of activity of the transcription factor GATA-1 by acetylation. Nature 396: 594-598.

    Brown, C.E., Lechner, T., Howe, L., and Workman, J.L. (2000) The many HATs of transcription coactivators. Trends Biochem. Sci. 25: 15-19.

    Brown, K., Park, S., Kanno, T., Franzoso, G., and Siebenlist, U. (1993) Mutual Regulation of the Transcriptional Activator NF- B and its Inhibitor, IB- Proc. Natl. Acad. Sci. 90: 2532-2536.

    Campeau, S., and Davis, M. (1995) Involvement of the central nucleus and basolateral complex of the amygdala in fear conditioning measured with fear-potentiated startle in rats trained concurrently with auditory and visual conditioned stimuli. J. Neurosci. 15: 2301-2311.

    Cassella, J.V., and Davis, M. (1986) The design and calibration of a startle measurement system. Physiol. Behav. 36: 377-383.

    Castagne, V., Lefevre, K., and Clarke, P.G.H. (2001) Dual role of the NF-kappaB transcription factor in the death of immature neurons. Neuroscience 108: 517-526.

    Castellucci, V.F., Blumenfeld, H., Goelet, P., and Kandel, E.R. (1989) Inhibitor of protein synthesis blocks long-term behavioral sensitization in the isolated gill-withdrawal reflex of Aplysia. J. Neurobiol. 20: 1-9.

    Chen, L.F., Fischle, W., Verdin, E., and Greene, W.C. (2001) Duration of nuclear NF-kB action regulated by reversible acetylation. Science 293: 1653-1657.

    Chen, L.F., Mu, Y., and Greene, W.C. (2002) Acetylation of RelA at discrete sites regulates distinct nuclear functions of NF-kB. EMBO J. 21: 6539-6548.

    Chen, Z., Hagler, J., Palombella, V.J., Melandri, F., Scherer, D., Ballard, D., and Maniatis, T. (1995) Signal-induced site-specific phosphorylation targets I kappa B alpha to the ubiquitin-proteasome pathway. Genes Dev. 9: 1586-1597.

    Chiao, P.J., Miyamoto, S., and Verma, I.M. (1994) Autoregulation of IkB- Activity. Proc. Natl. Acad. Sci. 91: 28-32.

    Chrivia, J.C., Kwok, R.P.S., Lamb, N., Hagiwara, M., Montminy, M.R., and Goodman, R.H. (1993) Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365: 855-859.

    Davis, H.P., and Squire, L.R. (1984) Protein synthesis and memory: a review. Psychol. Bull. 96: 518-559.

    Davis, M. (1997) Neurobiology of fear responses: the role of the amygdala. J. Neuropsychiatry Clin. Neurosci. 9: 382-402.

    Davis, M. (2000) The role of the amygdala in conditioned and unconditioned fear and anxiety. In: The Amygdala: A Functional Analysis (Aggleton JP, ed), pp 213-287. New York: Oxford UP.

    Denk, A., Wirth, T., and Baumann, B. (2000) NF-kappaB transcription factors: critical regulators of hematopoiesis and neuronal survival. Cytokine & Growth factor Rev. 11: 303-320.

    Dingledine, R., Borges, K., Bowie, D., and Traynelis, S.F. (1999) The glutamate receptor ion channels. Pharmacol. Rev. 51: 7-61.

    Falls, W.A., Miserendino, J.D., and Davis, M. (1992) Extinction of fear-potentiated startle: blockade by infusion of an NMDA antagonist into the amygdala. J. Neurosci. 12: 854-863.

    Frerking, M., and Nicoll, R.A. (2000) Synaptic kainate receptors. Curr. Opin. Neurobiol. 10: 342-351.

    Frey, U., and Morris, R.G.M. (1997) Synaptic tagging and long-term potentiation. Nature 385: 533-536.

    Frey, U., and Morris, R.G.M. (1998) Synaptic tagging: implications for late maintenance of hippocampal long-term potentiation. Trends Neurosci. 21: 181-188.

    Gerritsen, M.E., Williams, C.J., Neish, A.S., Moore, S., Shi, Y., and Collins, T. (1997) CREB-binding protein/p300 are transcriptional coactivators of p65. Proc. Natl. Acad. Sci. 94: 2927-2932.

    Giles, R.H., Peters, D.J., and Bruening, M.H. (1998) Conjunction dysfunction: CBP/p300 in human disease. Trends Genet. 14: 178-183.

    Goosens, K.A., and Maren, S. (2001) Contextual and auditory fear conditioning are mediated by the lateral, basal, and central amygdaloid nuclei in rats. Learn. Mem. 8: 148-155.

    Grover, L.M., and Teyler, T.J. (1990) Two components of long-term potentiation induced by different patterns of afferent activation. Nature 347: 477-479.

    Grunstein, M. (1997) Histone acetylation in chromatin structure and transcription. Nature 389: 349-352.

    Hampson, D.R., Huang, X.P., Oberdorfer, M.D., Goh, J.W., Auyeung, A., and Wenthold, R.J. (1992) Localization of AMPA receptors in the hippocampus and cerebellum of the rat using an anti-receptor monoclonal antibody. Neuroscience 50: 11-22.

    Hayashi, Y., Shi, S.H., Esteban, J.A., Piccini, A., Poncer, J.C., and Malinow, R. (2000) Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287: 2262-2267.

    Henkel, T., Machleidt, T., Alkalay, L., Kronke, M., Ben-Neriah, Y., and Baeuerle, P.A. (1993) Rapid proteolysis of I kappa B-alpha is necessary for activation of transcription factor NF-kappa B. Nature 365: 182-185.

    Heynen, A.J., Quinlan, E.M., Bae, D.C., and Bear, M.F. (2000) Bidirectional, activity-dependent regulation of glutamate receptors in the adult hippocampus in vivo. Neuron 28: 527-536.

    Hollingsworth, E.B., McNeal, E.T., Burton, J.L., Williams, R.J., Daly, J.W., and Creveling, C.R. (1985) Biochemical characterization of a filtered synaptoneurosome preparation from guinea pig cerebral cortex: cyclic adenosine 3’,5’-monophosphate-generating systems, receptors, and enzymes. J. Neurosci. 5: 2240-2253.

    Hollmann, M., and Heinemann, S. (1994) Cloned glutamate receptors. Annu. Rev. Neurosci. 17: 31-108.

    Hollamann, M., Hartley, M., and Heinmann, S. (1991) Ca permeability of KA-AMPA gated glutamate receptor channels depends on subunit composition. Science 252: 851-853.

    Huang, Y.Y., Li, X.C., and Kandel, E.R. (1994) cAMP contributes to mossy fiber LTP by initiating both a covalently mediated early phase and macromolecular synthesis-dependent late phase. Cell 79: 69-79.

    Huang, Y.Y., and Kandel, E.R. (1998) Postsynaptic induction and PKA-dependent expression of LTP in the lateral amygdala. Neuron 21: 169-178.

    Huang, Y.Y., Martin, K.C., and Kandel, E.R. (2000) Both Protein Kinase A and Mitogen-Activated Protein Kinase Are Required in the Amygdala for the Macromolecular Synthesis-Dependent Late Phase of Long-Term Potentiation. J. Neurosci. 20: 6317-6325.

    Hui, Ng. H., and Bird, A. (2000) Histone deacetylases: silencers for hire. Trends Biochem. Sci. 25: 121-126.

    Impey, S., Smith, D.M., Obrietan, K., Donahue, R., Wade, C., and Storm, D.R. (1998) Stimulation of cAMP response element (CRE)-mediated transcription during contextual learning. Nat. Neurosci. 1: 595-601.

    Ito, C.Y., Kazantsev, A.G., and Baldwin, Jr.A.S. (1994) Three NF-kappa B sites in the I kappa B-alpha promoter are required for induction of gene expression by TNF alpha. Nucl. Acids Res. 22: 3787-3792.

    Jia, Z., Agopyan, N., Miu, P., Xiong, Z., Henderson, J., Gerlai, R., Taverna, F.A., Velumian, A., MacDonald, J., and Carlen, P. (1996) Enhanced LTP in mice deficient in the AMPA receptor GluR2. Neuron 17: 945-956.

    Josselyn, S.A., Shi, C., Carlezon, Jr.W.A., Neve, R.L., Nestler, E.J., and Davis, M. (2001) Long-Term Memory Is Facilitated by cAMP Response Element-Binding Protein Overexpression in the Amygdala. J. Neurosci. 21: 2404-2412.

    Josselyn, S.A., Kida, S., and Silva, A.J. (2004) Inducible repression of CREB function disrupts amygdala-dependent memory. Neurobiol. Learn. Mem. 82: 159-163.

    Jourdi, H., Iwakura, Y., Narisawa-Saito, M., Ibaraki, K., Xiong, H., Watanabe, M., Hayashi, Y., Takei, N., and Nawa, H. (2003) Brain-derived neurotrophic factor signal enhances and maintains the expression of AMPA receptor-associated PDZ proteins in developing cortical neurons. Dev. Biol. 263: 216-230.

    Ju, W., Morishita, W., Tsui, J., Gaietta, G., Deerinck, T.J., Adams, S.R., Garner, C.C., Tsien, R.Y., Ellisman, M.H., and Malenka, R.C. (2004) Activity-dependent regulation of dendritic synthesis and trafficking of AMPA receptors. Nat. Neurosci. 7: 244-253.

    Kalkhoven, E. (2004) CBP and p300: HATs for different occasions. Biochem. Pharmacol. 68: 1145-1155.

    Kandel, E.S. (2001) The molecular biology of memory storage: a dialogue between genes and synapses. Science 294: 1030-1038.

    Kapp, B.S., Frysinger, R.C., Gallagher, M., and Haselton, J.R. (1979) Amygdala central nucleus lesions: effect on heart rate conditioning in the rabbit. Physiol. Behav. 23: 1109-1117.

    Kapp, B.S., Supple, W.F., and Whalen, P.J. (1994) Effects of electrical stimulation of the amygdaloid central nucleus on neocortical arousal in the rabbit. Behav. Neurosci. 108: 81-93.

    Keifer, J.A., Guttridge, D.C., Ashburner, B.P., and Baldwin, Jr.A.S. (2001) Inhibition of NF- B Activity by Thalidomide through Suppression of I B Kinase Activity. J. Biol. Chem. 276: 22382-22387.

    Kida, S., Josselyn, S.A., de Ortiz. S.P., Kogan. J.H., Chevere, I., Masushige, S., and Silva, A.J. (2002) CREB required for the stability of new and reactivated fear memories. Nat. Neurosci. 5: 348-355.

    Kiernan, R., Bres, V., Ng, R.W.M., Coudart, M.P., Messaoudi, S.E., Sardet, C., Jin, D.Y., Emiliani, S., and Benkirane, M. (2003) Post-activation turn-off of NF-kB-dependent transcription is regulated by acetylation of p65. J. Biol. Chem. 278: 2758-2766.

    Kouzarides, T. (1999) Histone acetylases and deacetylases in cell proliferation. Curr. Opin. Genet. Dev. 9: 40-48.

    Kuo, M.H., and Allis, C.D. (1998) Roles of histone acetyltransferases and deacetylases in gene regulation. Bio. Essays 20: 615-620.

    LeDoux, J.E. (2000) Emotion circuits in the brain. Annu. Rev. Neurosci. 23: 155-184.

    LeDoux, J.E., Iwata, J., Cicchetti, P., and Reis, D.J. (1988) Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. J. Neurosci. 8: 2517-2529.

    Lee, H., and Kim, J.J. (1998) Amygdalar NMDA receptors are critical for new fear learning in previously fear-conditioned rats. J. Neurosci. 18: 8444-8454.

    Leonard, A.S., Davare, M. A., Horne, M.C., Garner, C.C., and Hell, J.W. (1998) SAP97 is associated with the α-amino-3-hydroxy-5- methylisoxazole-4-propionic acid receptor GluR1 subunit. J. Biol. Chem. 273: 19518-19524.

    Lerma, J., Paternain, A.V., Rodríguez-Moreno, A., and López-García, J.C. (2001) Molecular physiology of kainate receptors. Physiol. Rev. 81: 971-998.

    Lilienbaum, A., and Israël, A. (2003) From Calcium to NF-B signaling pathways in neurons. Mol. Cell. Biol. 23: 2680-2698.

    Lin, C.H., Yeh, H.W., Lin, C.H., Lu, K.T., Leu, T.H., Chang, W.C., and Gean, P.W. (2001) A role for the PI-3 kinase signaling pathway in fear conditioning and synaptic plasticity in the amygdala. Neuron 31: 841-851.

    Lyss, G., Knorre, A., Schmidt, T.J., Pahl, H.L., and Merfort, I. (1998) The anti-inflammatory sesquiterpene lactone helenalin inhibits the transcription factor NF-kB by directly targeting p65. J. Biol. Chem. 50: 33508-33516.

    Magee, J.C., and Johnston, D. (1997) A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275: 209-213.

    Malenka, R.C., and Nicoll, R.A. (1999) Long-term potentiation – a decade of progress? Science 285: 1870-1874.

    Malinow, R., and Malenka, R.C. (2002) AMPA receptors trafficking and synaptic plasticity. Annu. Rev. Neurosci. 25: 103-126.

    Malinow, R., Schulman, H., and Tsien, R.W. (1989) Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP. Science 245: 862-866.

    Maren, S. (1999) Long-term potentiation in the amygdala: a mechanism for emotional learning and memory. Trends Neurosci. 22: 561-567.

    Martinez-Balbas, M.A., Bauer, U.M., Nielsen, S.J., Brehm, A., and Kouzarides, T. (2000) Regulation of E2F1 activity by acetylation. EMBO J. 19: 662-671.

    Matilla, A., Koshy, B.T., Cummings, C.J., Isobe, T., Orr, H.T., and Zoghbi H.Y. (1997) Fear conditioning induces associative long-term potentiation in the amygdale. Nature 390: 604-607.

    May, M.J., and Ghosh, S. (1998) Signal transduction through NF-kappa B. Immunol. Today 19: 80-88.

    McKernan, M.G., and Shinnick-Gallagher, P. (1997) Fear conditioning induces a lasting potentiation of synaptic currents in vitro. Nature 390: 607-610.

    Meng, Y., Zhang, Y., and Jia, Z. (2003) Synaptic transmission and plasticity in the absence of AMPA glutamate receptor GluR2 and GluR3. Neuron 39: 163-176.

    Mercurio, F., and Manning, A.M. (1999) Multiple signals converging on NF-kappaB. Curr. Opin. Cell Biol. 11: 226-232.

    Mercurio, F., Zhu, H., Murray, B.W., Shevchenko, A., Bennett, B.L., Li, J.W., Young, D.B., Barbosa, M., Mann, M., Manning, A., and Rao, A. (1997) IKK-1 and IKK-2: Cytokine-Activated I B Kinases Essential for NF- B Activation. Science 278: 860-866.

    Meshul, C.K., and Hopkins, W.F. (1990) Presynaptic ultrastructural correlates of long-term potentiation in the CA1 subfield of the hippocampus. Brain Res. 514: 310-319.

    Michael, W.S. (2001) LTP gets culture. Trends Neurosci. 24: 560-561.

    Miserendino, M.J., Sananes, C.B., Melia, K.R., and Davis, M. (1990) Blocking of acquisition but not expression on conditioned fear-potentiated startle by NMDA antagonists in the amygdala. Nature 345: 716-718.

    Nakazawa, K., McHugh, T.J., Wilson, M.A., and Tonegawa, S. (2004) NMDA receptors, place cells and hippocampal spatial memory. Nat. Rev. Neurosci. 5: 361-372.

    Nguyen, P.V., and Kandel, E.R. (1996) A macromolecular synthesis- dependent late phase of long-term potentiation requiring cAMP in the medial perforant pathway of rat hippocampal slices. J. Neurosci. 16: 3189-3198.

    Nguyen, P.V., Abel, T., and Kandel, E.R. (1994) Requirement of a critical period of transcription for induction of a late phase of LTP. Science 265: 1104-1107.

    Nickols, J.C., Valentine, W., Kanwal, S., and Carter, B.D. (2003) Activation of the transcription factor NF-kB in Schwann cells is required for peripheral myelin formation. Nat. Neurosci. 6: 161-167.

    O’Neill, L.A.J., and Kaltschmidt, C. (1997) NF-kappa B: a crucial transcription factor for glial and neuronal cell function. Trends Neurosci. 20: 252-258.

    Osten, P., Khatri, L., Perez, J.L., Köhr, G., Giese, G., Daly, C., Schulz, T.W., Wensky, A., Lee, L.M., and Ziff, E.B. (2000) Mutagenesis reveals a role for ABP/GRIP binding to GluR2 in synaptic surface accumulation of the AMPA receptor. Neuron 27: 313-325.

    Ozes, O.N., Mayo, L.D., Gustin, J.A., Pfeffer, S.R., Pfeffer, L.M., and Donner, D.B. (1999) NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 401: 82-85.

    Palmer, M.J., Isaac, J.T.R., and Collingridge, G.L. (2004) Multiple, developmentally regulated expression mechanisms of long-term potentiation at CA1 synapses. J. Neurosci. 24: 4903-4911.

    Paxinos, G., and Watson, C. (1986) The rat brain in stereotaxic coordinates. Academic Press, New York.

    Perazzona, B., Isabel, G., Preat, T., and Davis, R.L. (2004) The role of cAMP response element-binding protein in Drosophila long-term memory. J. Neurosci. 24: 8823-8828.

    Perez, J.L., Khatri, L., Chang, C., Srivastava, S., Osten, P., and Ziff, E.B. (2001) PICK1 targets activated protein kinase Cα to AMPA receptor clusters in spines of hippocampal neurons and reduces surface levels of the AMPA-type glutamate receptor subunit 2. J. Neurosci. 21: 5417-5428.

    Perkins, N.D. (2000) The Rel/NF-kappa B family: friend and foe. Trends Biochem. Sci. 25: 434-440.

    Perkins, N.D., Felzien, L.K., Betts, J.C., Leung, K., Beach, D.H., and Nabel, G.J. (1997) Regulation of NF-kappaB by cyclin-dependent kinases associated with the p300 coactivator. Science 275: 523-527.

    Rogan, M.T., Staubli, U.V., and LeDoux, J.E. (1997) Fear conditioning induces associative long-term potentiation in the amygdala. Nature 390: 604-607.

    Romashkova, J.A., and Makarov, S.S. (1999) NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling. Nature 401: 86-90.

    Sananes, C.B., and Davis, M. (1992) N methyl D aspartate lesions of the lateral and basolateral nuclei of the amygdala block fear potentiated startle and shock sensitization of startle. Behav. Neurosci. 106: 72-80.

    Schafe, G.E., Atkins, C.M., Swank, M.W., Bauer, E.P., Sweatt, J.D., and LeDoux, J.E. (2000) Activation of ERK/MAP Kinase in the Amygdala Is Required for Memory Consolidation of Pavlovian Fear Conditioning. J. Neurosci. 20: 8177-8187.

    Schmitz, M.L., Bacher, S., and Kracht, M. (2001) I B-independent control of NF-B activity by modulatory phosphorylations. Trends Biochem. Sci. 26: 186-190.

    Shen, L., Liang, F., Walensky, L.D., and Huganir, R.L. (2000) Regulation of AMPA receptor GluR1 subunit surface expression by a 4.1N-linked actin cytoskeletal association. J. Neurosci. 20: 7932-7940.

    Shi, S.H., Hayashi, Y., Esteban, J.A., and Malinow, R. (2001) Subunit-specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons. Cell 105: 331-343.

    Shi, S.H., Hayashi, Y., Petralia, R.S., Zaman, S.H., Wenthold, R.J., Svoboda, K., and Malinow, R. (1999) Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science 284: 1811-1816.

    Shikama, N., Lyon, J., and Thangue, N.B.L. (1997) The p300/CBP family: integrating signals with transcription factors and chromatin. Trends Cell Biol. 7: 230-236.

    Siebenlist, U., Franzoso, G., and Brown, R. (1994) Structure, regulation and function of NF-kappa B. Ann. Rev. Cell Biol. 10: 405-455.

    Song, I., and Huganir, R.L. (2002) Regulation of AMPA receptors during synaptic plasticity. Trends Neurosci. 25: 578-589.

    Staubli, U., and Chun, D. (1996) Factors regulating the reversibility of long-term potentiation. J. Neurosci. 16: 853-860.

    Sun, S.C., Ganchi, P.A., Ballard, D.W., and Greene, W.C. (1993) NF-kappa B controls expression of inhibitor I kappa B alpha: evidence for an inducible autoregulatory pathway. Science 259: 1912-1915.

    Takahashi, T., Svoboda, K., and Malinow, R. (2003) Experience strengthening transmission by driving AMPA receptors into synapses. Science 299: 1585-1588.

    Toliver-Kinsky, T., Papaconstantinou, J., and Perez-Polo, J.R. (1997) Age-associated alterations in hippocampal and basal forebrain nuclear factor kappa B activity. J. Neurosci. Res. 48: 580-587.

    Tony, K. (2000) Acetylation: a regulatory modification to rival phosphorylation? EMBO J. 19: 1176-1179.

    Toyooka, K., Iritani, S., Makifuchi, T., Shirakawa, O., Kitamura, N., Maeda, K., Nakamura, R., Niizato, K., Watanabe, M., Kakita, A., Takahashi, H., Someya, T., and Nawa, H. (2002) Selective reduction of a PDZ protein, SAP-97, in the prefrontal cortex of patients with chronic schizophrenia. J. Neurochem. 83: 797-806.

    Tsvetkov, E., Carlezon, Jr.W.A., Benes, F.M., Kandel, E.R., and Bolshakov, V.Y. (2002) Fear conditioning occludes LTP-induced presynaptic enhancement of synaptic transmission in the cortical pathway to the lateral amygdala. Neuron 34: 289-300.

    Verma, I.M., Stevenson, J.K., Schwarz, E.M., Van Antwerp, D., and Miyamoto, S. (1995) Rel/NF-kappa B/I kappa B family: intimate tales of association and dissociation. Genes Dev. 9: 2723-2735.

    Walker, D.L., and Davis, M. (2002) The role of amygdala glutamate receptors in fear learning,fear-potentiated startle, and extinction. Pharmacol. Biochem. Behav. 71: 379- 392.

    Weisskopf, M.G., Bauer, E.P., and LeDoux, J.E. (1999) L-type voltage-gated calcium channels mediate NMDA-independent associative long-term potentiation at thalamic input synapses to the amygdala. J. Neurosci. 19: 10512-10519.

    Wu, M., Lee, H., Billas, R.E., Schauer, S.L., Arsura, M., Katz, D., FitzGerald, M., Rothstein, T.L., Sherr, D.H., and Sonenshein, G.E. (1996) Inhibition of NF-kappaB/Rel induces apoptosis of murine B cells. EMBO J. 15: 4682-4690.

    Xiao, M.Y., Wasling, P., Hanse, E., and Gustafsson, B. (2004) Creation of AMPA-silent synapses in the neonatal hippocampus. Nat. Neurosci. 7: 236-243.

    Yeh, S.H., Lin, C.H., Lee, C. F., and Gean, P.W. (2002) Requirement of nuclear factor-kB activation in fear-potentiated startle. J. Biol. Chem. 277: 46720-46729.

    Yeh, S.H., Lin, C.H., and Gean, P.W. (2004) Acetylation of nuclear factor-B in rat amygdala improves long-term but not short-term retention of fear memory. Mol. Pharmacol. 65: 1286-1292.

    Yu, Z., Zhou, D., Bruce-Keller, A.J., Kindy, M.S., and Mattson, M.P. (1999) Lack of the p50 Subunit of Nuclear Factor- B Increases the Vulnerability of Hippocampal Neurons to Excitotoxic Injury. J. Neurosci. 19: 8856-8865.

    Zamanillo, D., Sprengel, R., Hvalby, O., Jensen, V., Burnashev, N., Rozov, A., Kaiser, K.M., Koster, H.J., Borchardt, T., and Worley, P. (1999) Importance of AMPA receptors for hippocampal synaptic plasticity but not for spatial learning. Science 284: 1805-1811.

    Zhong, J., Voll, R.E., and Gosh, S. (1998) Phosphorylation of NF-kappa B p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol. Cell 1: 661-671.

    下載圖示 校內:2006-01-13公開
    校外:2006-01-13公開
    QR CODE