| 研究生: |
吳冠宏 Wu, Guan-Hong |
|---|---|
| 論文名稱: |
利用 LC-MS/MS 與計算模擬反應技術進行溶劑雜質的非標靶鑑定 Non-targeted Identification of Impurities in Solvents by LC-MS/MS and In Silico Reaction |
| 指導教授: |
陳淑慧
Chen, Shu-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 125 |
| 中文關鍵詞: | 非標靶分析 、溶劑雜質 、液相層析-串聯質譜 |
| 外文關鍵詞: | Non-targeted analysis, solvent impurities, LC-MS/MS |
| 相關次數: | 點閱:24 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
(1) Rusko, J.; Perkons, I.; Rasinger, J. D.; Bartkevics, V. Non-target and suspected-target screening for potentially hazardous chemicals in food contact materials: investigation of paper straws. Food Additives & Contaminants: Part A 2020, 37 (4), 649-664.
(2) Guo, Z.; Zhu, Z.; Huang, S.; Wang, J. Non-targeted screening of pesticides for food analysis using liquid chromatography high-resolution mass spectrometry-a review. Food Additives & Contaminants: Part A 2020, 37 (7), 1180-1201.
(3) Krauss, M.; Singer, H.; Hollender, J. LC–high resolution MS in environmental analysis: from target screening to the identification of unknowns. Analytical and bioanalytical chemistry 2010, 397, 943-951.
(4) Pourchet, M.; Debrauwer, L.; Klanova, J.; Price, E. J.; Covaci, A.; Caballero-Casero, N.; Oberacher, H.; Lamoree, M.; Damont, A.; Fenaille, F. Suspect and non-targeted screening of chemicals of emerging concern for human biomonitoring, environmental health studies and support to risk assessment: From promises to challenges and harmonisation issues. Environment international 2020, 139, 105545.
(5) Fisher, C. M.; Croley, T. R.; Knolhoff, A. M. Data processing strategies for non-targeted analysis of foods using liquid chromatography/high-resolution mass spectrometry. TrAC Trends in Analytical Chemistry 2021, 136, 116188.
(6) Zhang, X.; Saini, A.; Hao, C.; Harner, T. Passive air sampling and nontargeted analysis for screening POP-like chemicals in the atmosphere: Opportunities and challenges. TrAC Trends in Analytical Chemistry 2020, 132, 116052.
(7) Newton, S.; McMahen, R.; Stoeckel, J. A.; Chislock, M.; Lindstrom, A.; Strynar, M. Novel polyfluorinated compounds identified using high resolution mass spectrometry downstream of manufacturing facilities near Decatur, Alabama. Environmental science & technology 2017, 51 (3), 1544-1552.
(8) Goto, A.; Tue, N. M.; Isobe, T.; Takahashi, S.; Tanabe, S.; Kunisue, T. Nontarget and target screening of organohalogen compounds in mussels and sediment from Hiroshima Bay, Japan: occurrence of novel bioaccumulative substances. Environmental Science & Technology 2020, 54 (9), 5480-5488.
(9) Titaley, I. A.; Lam, M. M.; Bülow, R.; Enell, A.; Wiberg, K.; Larsson, M. Characterization of polycyclic aromatic compounds in historically contaminated soil by targeted and non-targeted chemical analysis combined with in vitro bioassay. Environmental Pollution 2021, 289, 117910.
(10) Newton, S. R.; Sobus, J. R.; Ulrich, E. M.; Singh, R. R.; Chao, A.; McCord, J.; Laughlin-Toth, S.; Strynar, M. Examining NTA performance and potential using fortified and reference house dust as part of EPA’s Non-Targeted Analysis Collaborative Trial (ENTACT). Analytical and bioanalytical chemistry 2020, 412, 4221-4233.
(11) Knolhoff, A. M.; Croley, T. R. Non-targeted screening approaches for contaminants and adulterants in food using liquid chromatography hyphenated to high resolution mass spectrometry. Journal of Chromatography A 2016, 1428, 86-96.
(12) Phillips, K. A.; Yau, A.; Favela, K. A.; Isaacs, K. K.; McEachran, A.; Grulke, C.; Richard, A. M.; Williams, A. J.; Sobus, J. R.; Thomas, R. S. Suspect screening analysis of chemicals in consumer products. Environmental science & technology 2018, 52 (5), 3125-3135.
(13) Du, B.; Lofton, J. M.; Peter, K. T.; Gipe, A. D.; James, C. A.; McIntyre, J. K.; Scholz, N. L.; Baker, J. E.; Kolodziej, E. P. Development of suspect and non-target screening methods for detection of organic contaminants in highway runoff and fish tissue with high-resolution time-of-flight mass spectrometry. Environmental Science: Processes & Impacts 2017, 19 (9), 1185-1196.
(14) Fisher, C. M.; Peter, K. T.; Newton, S. R.; Schaub, A. J.; Sobus, J. R. Approaches for assessing performance of high-resolution mass spectrometry–based non-targeted analysis methods. Analytical and bioanalytical chemistry 2022, 414 (22), 6455-6471.
(15) Manz, K. E.; Feerick, A.; Braun, J. M.; Feng, Y.-L.; Hall, A.; Koelmel, J.; Manzano, C.; Newton, S. R.; Pennell, K. D.; Place, B. J. Non-targeted analysis (NTA) and suspect screening analysis (SSA): a review of examining the chemical exposome. Journal of exposure science & environmental epidemiology 2023, 33 (4), 524-536.
(16) Glish, G. L.; Vachet, R. W. The basics of mass spectrometry in the twenty-first century. Nature reviews drug discovery 2003, 2 (2), 140-150.
(17) Nguyen, D. H.; Nguyen, C. H.; Mamitsuka, H. Recent advances and prospects of computational methods for metabolite identification: a review with emphasis on machine learning approaches. Briefings in bioinformatics 2019, 20 (6), 2028-2043.
(18) Baldwin, M. Modern mass spectrometry in bioorganic analysis. Natural Product Reports 1995, 12 (1), 33-44.
(19) Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Electrospray ionization for mass spectrometry of large biomolecules. Science 1989, 246 (4926), 64-71.
(20) Karas, M.; Krüger, R. Ion formation in MALDI: the cluster ionization mechanism. Chemical reviews 2003, 103 (2), 427-440.
(21) Konermann, L.; Ahadi, E.; Rodriguez, A. D.; Vahidi, S. Unraveling the mechanism of electrospray ionization. ACS Publications: 2013.
(22) Banerjee, S.; Mazumdar, S. Electrospray ionization mass spectrometry: a technique to access the information beyond the molecular weight of the analyte. International journal of analytical chemistry 2012, 2012 (1), 282574.
(23) Bakota, E. L.; Levine, R. A. Identification of two novel trace impurities in mobile phases prepared with commercial formic acid. Rapid Communications in Mass Spectrometry 2020, 34 (5), e8608.
(24) Pluskal, T. s.; Uehara, T.; Yanagida, M. Highly accurate chemical formula prediction tool utilizing high-resolution mass spectra, MS/MS fragmentation, heuristic rules, and isotope pattern matching. Analytical chemistry 2012, 84 (10), 4396-4403.
(25) Depke, T.; Franke, R.; Brönstrup, M. Clustering of MS2 spectra using unsupervised methods to aid the identification of secondary metabolites from Pseudomonas aeruginosa. Journal of Chromatography B 2017, 1071, 19-28.
(26) Wang, F.; Liigand, J.; Tian, S.; Arndt, D.; Greiner, R.; Wishart, D. S. CFM-ID 4.0: more accurate ESI-MS/MS spectral prediction and compound identification. Analytical chemistry 2021, 93 (34), 11692-11700.
(27) Rardin, M. J. Rapid assessment of contaminants and interferences in mass spectrometry data using skyline. Journal of The American Society for Mass Spectrometry 2018, 29 (6), 1327-1330.
(28) Narayana, R.; Mohana, C.; Kumar, A. Analytical characterization of erucamide degradants by mass spectrometry. Polymer Degradation and Stability 2022, 200, 109956.
(29) Perego, C.; Ingallina, P. Recent advances in the industrial alkylation of aromatics: new catalysts and new processes. Catalysis today 2002, 73 (1-2), 3-22.
(30) Degnan Jr, T. F.; Smith, C. M.; Venkat, C. R. Alkylation of aromatics with ethylene and propylene: recent developments in commercial processes. Applied catalysis A: general 2001, 221 (1-2), 283-294.
(31) Schmidt, R. J. Industrial catalytic processes—phenol production. Applied Catalysis A: General 2005, 280 (1), 89-103.
(32) Zakoshansky, V. M. Method for the decomposition of cumene hydroperoxide by acidic catalyst to phenol and acetone. Google Patents: 1993.
(33) Weissermel, K.; Arpe, H.-J. Industrial organic chemistry; John Wiley & Sons, 2008.
(34) Jones, J. H. The Cativa™ process for the manufacture of acetic acid. Platinum Metals Review 2000, 44 (3), 94-105.
(35) Yoneda, N.; Kusano, S.; Yasui, M.; Pujado, P.; Wilcher, S. Recent advances in processes and catalysts for the production of acetic acid. Applied Catalysis A: General 2001, 221 (1-2), 253-265.
(36) Sullivan, C.; Kuenz, A.; Vorlop, K. Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany 2018, 10 (14356007), a22_163.
(37) Roy, K. M. Sulfones and sulfoxides. Ullmann's Encyclopedia of Industrial Chemistry 2000.
(38) Logsdon, J. E. Ethanol. Kirk‐Othmer Encyclopedia of Chemical Technology 2000.
(39) Kosaric, N.; Duvnjak, Z.; Farkas, A.; Sahm, H.; Bringer‐Meyer, S.; Goebel, O.; Mayer, D. Ethanol. Ullmann's encyclopedia of industrial chemistry 2000, 1-72.
(40) Reutemann, W.; Kieczka, H. Formic acid. Ullmann’s encyclopedia of industrial chemistry 2011, 16, 67-82.
(41) Schaub, T.; Paciello, R. A. A process for the synthesis of formic acid by CO2 hydrogenation: thermodynamic aspects and the role of CO. Angewandte Chemie International Edition 2011, 50 (32), 7278-7282.
(42) Fiedler, E.; Grossmann, G.; Kersebohm, D. B.; Weiss, G.; Witte, C. Methanol; 2000.
(43) Papa, A. J. Propanal. Ullmann's Encyclopedia of Industrial Chemistry 2000.
校內:2028-08-25公開