簡易檢索 / 詳目顯示

研究生: 邱處祥
Chiou, Chu-Shiang
論文名稱: 晶格波茲曼法結合大渦模型模擬暫態衝擊噴流問題
Transient Impinging Jet Flow Simulation Using Lattice Boltzmann Method and Combined Large-Eddy Model
指導教授: 楊玉姿
Yang, Yue-Tzu
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 87
中文關鍵詞: 晶格波茲曼法流函數-渦度法紊流大渦模擬衝擊噴流數值模擬
外文關鍵詞: Lattice Boltzmann Method, Stream function-vorticity, turbulent, Large-Eddy simulation, Impinging jet, Numerical simulation
相關次數: 點閱:125下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要在探討二維晶格波茲曼法結合大渦模型應用到三種不同的紊流場並提出了有系統與廣泛的研究評估。此三種數值模擬的範例分別為頂蓋驅動流場、背向階梯流場以及紊流噴流衝擊冷卻。紊流統御方程式使用流函數-渦度法配合大渦模型表示之,並使用晶格波茲曼法將統御方程式做離散,採用D2Q5的晶格波茲曼模型模擬速度場及溫度場。首先在前兩個範例,頂蓋驅動流與背向階梯流場的驗證中,與基準的實驗結果相比較之下,發現使用晶格波茲曼法結合大渦模擬,模擬結果是相當可靠與準確的。
    最後,將晶格波茲曼法結合大渦模擬實際應用到噴流衝擊流場進行數值模擬與討論。首先對具有兩種熱邊界的紊流衝擊噴流作驗證,等溫邊界(Re=10200,H/W=2.6)與等熱通量邊界(Re=10000,H/W=2),對於紊流噴流衝擊流場與熱傳的數值預測值與文獻的數據作驗證。另外,對於暫態噴流衝擊亦進行分析,其研究範圍為300<=Re<=1500,2<=H/W<=4,0.5<=q<=1.5,工作流體為空氣(Pr=0.71)。數值結果顯示紐賽數隨著雷諾數的增加而增加,而改變了衝擊高度(H/W)會使得流場提早轉變為紊流,並且對紐賽數的分布有顯著的影響。在整個模擬的結果可以發現,晶格波茲曼法結合大渦模擬,模擬暫態之紊流流場具有相當的準確性,在未來紊流場的模擬應用上是很有前途的。

    In this study, systematic and comprehensive research has been proposed to evaluate a two-dimensional Lattice Boltzmann Method (LBM) coupled with a Large Eddy Simulation (LES) model and has been applied to three different turbulent flow type. Three numerical examples, lid driven cavity, backward facing step flow and turbulent jet impingement cooling are employed. Turbulent governing equations using the stream function-vorticity method combined the Large-Eddy Simulation model is solved and discreted with Lattice Boltzmann model. A numerical scheme to solve the flow and the temperature fields using the D2Q5 is presented. In the first two examples, the LBM coupled with LES for predicting the lid driven cavity, and the backward facing step flow have been evaluated by comparing the numerical results with benchmark experimental data. The good agreement indicates the LBM coupled with LES is reliable and accurate.
    Finally, a practical application of LBM coupled with LES for jet impingement is simulated and discussed. The validation of the turbulent impinging jet with two thermal boundary, constant temperature boundary (Re=10200,H/W=2.6) and constant flux (Re=10000,H/W=2) are studied first. The numerical predictions of turbulent jet impingement flow and heat transfer have been evaluated by comparing with the available data in the literature. In addition, the analysis of transient jet impingement is carried out for 300<=Re<=1500,2<=H/W<=4,0.5<=q<=1.5 . The fluid considered here is air (Pr=0.71). The results show that Nu increases with increasing jet Reynolds number, while the increase in parameters H/W to advance the time of flow field from the transition to turbulence and has a significant influence on the Nusselt number distribution. The results demonstrate that the present numerical model is a promising tool to investigate the solution of fluid flow and heat transfer for turbulent flow.

    目錄 中文摘要……………………………………………………………………………I 英文摘要…………………………………………………………………………III 誌謝…………………………………………………………………………………V 目錄…………………………………………………………………………………VI 表目錄………………………………………………………………………………IX 圖目錄………………………………………………………………………………X 符號說明…………………………………………………………………………XIV 第一章 緒論………………………………………………………………………1 1-1 研究背景與動機…………………………………………………1 1-2 晶格波茲曼法(LBM)文獻回顧……………………………………3 1-3 大渦模擬(LES)文獻回顧…………………………………………4 1-4 衝擊噴流文獻回顧………………………………………………6 1-5 本文探討的主題與方法…………………………………………8 1-6 本文架構…………………………………………………………8 第二章 理論分析…………………………………………………………………9 2-1 統御方程式解析…………………………………………………9 2-2 晶格波茲曼方法(Lattice Boltzmann Method)……………10 2-3 大渦模擬(Large-Eddy Simulation)………………………11 2-4無因次化系統……………………………………………………16 2-5邊界條件…………………………………………………………19 2-6 Nusselt number計算…………………………………………24 第三章 數值方法…………………………………………………………………25 3-1晶格波茲曼方程式之推導………………………………………25 3-1-1渦度晶格波茲曼方程式之推導………………………25 3-1-2流線晶格波茲曼方程式之推導………………………28 3-1-3能量晶格波茲曼方程式之推導………………………31 3-2 收斂標準…………………………………………………………35 第四章 結果與討論………………………………………………………………36 4-1頂蓋驅動流場……………………………………………………37 4-2 背向階梯流場……………………………………………………38 4-3 衝擊噴流流場……………………………………………………39 4-3-1 衝擊噴流流動現象……………………………………40 4-3-2 衝擊噴流之固定壁面溫度邊界條件…………………41 4-3-3 衝擊噴流之固定壁面熱通量邊界條件………………44 第五章 結論與未來方向…………………………………………………………80 5-1 結論………………………………………………………………80 5-2 未來方向…………………………………………………………81 參考文獻……………………………………………………………………………82 自述…………………………………………………………………………………87 表目錄 表4-1 頂蓋驅動流場各漩渦中心點位置.........................47 圖目錄 圖2-1 晶格波茲曼模型示意圖………………………………………………11 圖2-2 頂蓋驅動流場示意圖…………………………………………………20 圖2-3 背向階梯流場示意圖…………………………………………………21 圖2-4 衝擊噴流流場示意圖…………………………………………………22 圖4-1 頂蓋驅動流場之流線驗證圖(Re = 400) ………………………………………………48 圖4-2 頂蓋驅動流場之流線驗證圖(Re = 1000)………………………………………………49 圖4-3 頂蓋驅動流場之流線驗證圖(Re = 5000)………………………………………………50 圖4-4 頂蓋驅動流場之流線驗證圖(Re = 10000)……………………………………………51 圖4-5 頂蓋驅動暫態流場之流線圖(Re = 20000)……………………………………………52 圖4-6 頂蓋驅動暫態流場之流線圖(Re = 20000,t=100000)……………………53 圖4-7 頂蓋驅動暫態流場之流線圖(Re = 20000,t=200000)……………………54 圖4-8 頂蓋驅動暫態流場之流線圖(Re = 20000,t=300000)……………………54 圖4-9 頂蓋驅動暫態流場之流線圖(Re = 20000,t=400000)……………………54 圖4-10 頂蓋驅動暫態流場之流線圖(Re = 20000,t=500000)……………………55 圖4-11 頂蓋驅動紊流流場殘值收斂圖 (Re = 20000)……………………………………56 圖4-12 背向階梯流場之再接觸點驗證圖……………………………………57 圖4-13 背向階梯流場之流線圖(Re = 300)…………………………………………………………58 圖4-14 背向階梯流場之流線圖(Re = 800)…………………………………………………………58 圖4-15 背向階梯流場之流線圖(Re = 1500)………………………………………………………58 圖4-16 背向階梯紊流流場殘值收斂圖(Re = 2400)…………………………………………59 圖4-17 背向階梯暫態流場之流線圖(Re = 2400)………………………………………………60 圖4-18 衝擊噴流流場之流線圖(Re = 300)…………………………………………………………61 圖4-19 衝擊噴流流場之流線圖(Re = 800)…………………………………………………………62 圖4-20 衝擊噴流流場之流線圖(Re = 1500)………………………………………………………63 圖4-21 衝擊噴流紊流流場殘值收斂圖 (Re = 10200)……………………………………64 圖4-22 衝擊噴流紊流溫度場殘值收斂圖 (Re = 10200)………………………………64 圖4-23 衝擊噴流等溫壁面條件之網格獨立測試圖 (H/W = 2.6, Re = 10200)………………………………………………………………………65 圖4-24 衝擊噴流流場等溫壁面條件之溫度分布圖(Re = 300)……………………66 圖4-25 衝擊噴流流場等溫壁面條件之溫度分布圖(Re = 800)……………………67 圖4-26 衝擊噴流流場等溫壁面條件之溫度分布圖(Re = 1500)…………………68 圖4-27 衝擊噴流流場等溫壁面條件之紐賽數分布圖(Re = 300)………………69 圖4-28 衝擊噴流流場等溫壁面條件之紐賽數分布圖(Re = 800)………………69 圖4-29 衝擊噴流流場等溫壁面條件之紐賽數分布圖(Re = 1500)……………70 圖4-30 紊流衝擊噴流流線圖及等溫壁面條件之溫度分布圖 (H/W = 2,Re = 10000)……………………………………………………………………………71 圖4-31 衝擊噴流等熱通量壁面條件之紐賽數驗證圖 (H/W = 2,Re = 10000)……………………………………………………………………………72 圖4-32 衝擊噴流流場等熱通量壁面條件之溫度分布圖 (Re=300,q=1.0 )……………………………………………………………………………………………73 圖4-33 衝擊噴流流場等熱通量壁面條件之溫度分布圖 (Re=800,q=1.0)………………………………………………………………………………………………74 圖4-34 衝擊噴流流場等熱通量壁面條件之溫度分布圖 (Re=1500,q=1.0)……………………………………………………………………………………………75 圖4-35 衝擊噴流流場等熱通量壁面條件之溫度分布圖 (H/W=3,Re=800,q=0.5)………………………………………………………………………………76 圖4-36 衝擊噴流流場等熱通量壁面條件之溫度分布圖 (H/W=3,Re=800,q=1.0)………………………………………………………………………………76 圖4-37 衝擊噴流流場等熱通量壁面條件之溫度分布圖 (H/W=3,Re=800,q=1.5)………………………………………………………………………………76 圖4-38 衝擊噴流流場等熱通量壁面條件之紐賽數分布圖 (Re=300,q=1.0)……………………………………………………………………………………………77 圖4-39 衝擊噴流流場等熱通量壁面條件之紐賽數分布圖 (Re=800,q=1.0 )…………………………………………………………………………………………77 圖4-40 衝擊噴流流場等熱通量壁面條件之紐賽數分布圖 (Re=1500,q=1.0 )………………………………………………………………………………………78 圖4-41 紊流衝擊噴流流線圖及等熱通量壁面條件之溫度分布圖 (H/W=2,Re=10000,q=1.0)………………………………………………………………………79

    Agarwal P.K., Bower W.W., Navier-Stokes Computations of
    turbulent compressible two-dimensional impinging jet
    flowfields, AIAA Journal, 20, No. 5, 577-584, 1982.
    Ambatipudi Kiran K. and Muhammad M. Rahman, Analysis of
    conjugate heat transfer in microchannel heat sink,
    Numerical Heat Transfer, part A, 37, 711-731, 2000.
    Alberto Scotti, Ugo Piomelli, Numerical simulation of
    pulsating turbulent channel flow, Phys Fluids, 13
    (5) :1367-1384, 2001.
    Broadwell J E, Shock structure in a smaple discrete
    velocity gas, The Physics of Fluids, 7, 1243-1247, 1964.
    Bardina, J., J. H. Ferziger, and W. C. Reynolds , Improved
    subgrid scale models for large eddy simulation, AIAA
    Pap., 80– 1357, 1980
    Bataille F., Rubinstein R. , Hussaini M.Y. , Eddy viscosity
    and diffusivity modeling , Physics Letters, A 346, 168–
    173, 2005.
    Baydar E., Ozmen Y., An experimental investigation on flow
    structures of confined and unconfined impinging air jets,
    Heat Mass Transfer, 42, 338-346, 2006.
    Chen S., Chen H., Martinez D.O., Matthaeus W. H., Lattice
    Boltzmann model for simulation of magnetohydrodynamics
    [J], Phys. Rev. Lett, 67, 3776-3779, 1991.
    Chan Daniel C, Mittal R., Large-eddy simulation of a
    backward facing step flow using a least-squares spectral
    element method, studying turbulence using numerical
    simulation databases, part 6, 347-358, 1996.
    Chung Y.M., Luo K.H., Sandham N.D., Numerical study of
    momentum and heat transfer in unsteady impinging jets,
    Int. J. Heat Mass Flow., 23, 592-600, 2002.
    Chen Sheng, Jonas Tolke, Manfred Krafczyk, A new method for
    the numerical solution of vorticity-stream function
    formulations, Comput. Methods Appl. Mech. Eng., 198, 367-
    376, 2008.
    Chai Zhenhua, Shi Baochang, A novel lattice Boltzmann model
    for the Poisson equation, Applied Mathematical Modelling
    32, 2050–2058, 2008.
    Chen Sheng, A large-eddy-based lattice Boltzmazz model for
    turbulent flow simulation, Applied Mathematics and
    Computation, 215, 591-598, 2009.
    Deardorff J. W., A numerical study of three-dimensional
    turbulent channel flow at large Reynold number, Journal
    of Fluid Mechanics, 41, 453-480, 1970.
    Frisch U, Hasslacher B, Pomeau Y., Molecular dynamics of a
    classical gas: Transport properties and time correlation
    functions, Physical Review A, 13, 1949-1961, 1976.
    Fan Q. L., Wang X. L., Large eddy simulation of a
    horizontal particle-laden turbulent planar jet.
    Computational Mechanics, 27, 128-137, 2001.
    Frohlich J, Rodi W., Introduction to large eddy simulation
    of turbulent flows. Launder Brian, Sandham Neil. Closure
    Strategies for Turbulent and Transitional Flows,
    Cambridge University Press, London, 267-298, 2002.
    Glauert M. B., The wall jet, Fluid Mech., 1, 625, 1956
    Goldstein R. J., Sobolik K. A., and Sool W. S., Effect of
    Entrainment on the Heat Transfer to a Heated Circular air
    Jet Impinging on a Flat surface, Transactions of the
    ASME, 112,608-611, 2003.
    Guo Zhaoli, Shi Baochang, Zheng Chuguang, A coupled lattice
    BGK model for the Boussinesq equations, International
    Journal Numerical Method in Fluids, 39, 325-342, 2002.
    Hardy J, Pazzis Od., Time evolution of two-dimemsional
    model system. I:Invarient states and time correlation
    functions, Journal of Mathematical Physics, 14, 1746-
    1759,1973.
    Higuera F J, Jimenez J., Boltzmann approach to lattice gas
    simulation, Europhsics Letters, 9 (7), 663-668, 1989.
    Hashemian S. D., Rahnama M., Farhadi M., Large Eddy
    Simulation of Turbulent Heat Transfer in a Channel With a
    Square Cylinder, Heat Transfer Engineering, 33 (2012)
    1052-1062.
    Jaberi F A , James S., A dynamic similarity model for large
    eddy simulation of turbulent combustion,Physics of
    Fluids, 10 (7) :1775217771,1998
    Jaramillo J.E., Trias F.X., Gorobets A., Pérez-Segarra
    C.D., Oliva A. , DNS and RANS modelling of a turbulent
    plane impinging jet, International Journal of Heat and
    Mass Transfer, 55, 789–801, 2012.
    Kim Won-wook, et al. Large eddy simulation of a gas turbine
    combustor flow [ J ], Combustion Science and Technology,
    43 :252621, 1999.
    Liu X., Lienhard J. H., and Lombara J. S., Convective Heat
    Transfer by Impingement of circular Liquid Jets, Journal
    of Heat Transfer, 113(3), 571-582, 1991.
    McNamara G.R., Zanetti G., Use of the Boltzmann equation to
    simulate lattice gas automata [J], Phy. Rev. Lett, 61,
    2332-2335, 1988.
    Moin P., Kim J., Numerical investigation of turbulent
    channel flow[J], Journal of Fluid Mechanics, 118, 341-
    377, 1982.
    Maveety J.G., Hendricks J.F., A Heat Sink Performance Study
    Considering Material, Geometry, Nozzle Placement, and
    Reynolds Number with Air Impingement, Journal of
    Electronic Materials , 121, 156–161, 1999.
    Mohamad A.A., Lattice Boltzmann method fundamentals and
    engineering applications with computer codes, Springer ,
    London, 2011.
    Ma K., Wei W. L. , Wang L.L. , Zhao X.J., Large eddy
    numerical simulation of flows over a backward-facing
    step, International Symposium on Water Resource and
    Environmental Protection (ISWREP), 4, 3024-3026, 2011.
    Nonn T., Dagan Z., Jiji L. M., Jet impingment flow boiling
    of a mixture of FC-72 and FC-87 liquids on a simulated
    electrionic chip, National Heat Transfer Conf., HTD vol.
    111, Philadelphia, 135-142, 1989
    Noble D. R., Chen S., Georgiadis J. G., Buckius R. O., A
    consistent hydrodynamic boundary condition for the
    lattice Boltzmann method, Physics Fluid, 7, 203-209, 1995.
    Poimell U., Ferziger J.H., Moin P.,et al., New
    approximation boundary conditions for large eddy
    simulations of wall-bounded flows, Physics of Fluids A,
    1 , 1061-1068, 1989.
    Qian Y., d’Humieres D., Lallemand P., Lattice BGK models
    for Navier-Stokes equation [J], Europhys, Lett, 17, 479-
    484, 1992.
    Smagorinsky, J.S. General circulation experiments with the
    primitive equations─ I. the basic experiment, Monthly
    Weather Review, 91, 99-164, 1963.
    Skordos P. A., Initial and boundary conditions for the
    lattice Boltzmann method, Physics Review E, 48, 4823-
    4842, 1993.
    Shi Baochang, Guo Zhaoli, Lattice Boltzmann model for
    nonlinear convection-diffusion equations, Physical
    Review , E 79, 016701, 2009.
    Shi Yuling, Ray M.B., Mujumdar A.S., Computational study of
    impingement heat transfer under a turbulent slot jet,
    Industrial and Engineering Chemistry Research, 41, 4643-
    4651, 2002.
    Sharif M. A.R., Mothe K.K., Evaluation of turbulence models
    in the prediction of heat transfer due to slot jet
    impingement on plane and concave surfaces, Numerical Heat
    Transfer, Part B: Fundamentals, 55:4, 273-294, 2010.
    Van Heiningen A. R. P., Heat transfer under an impinging
    slot jet, Ph.D. thesis, McGill University, Montreal,
    Quebec, Canada, 1982.
    Wolfshtein, M., Some solutions of the plane turbulent
    impinging jet, Journal of Heat and Mass Transfer, 32, No.
    7, 1361-1371, 1989.
    Wang L., Dong Y.H., Lu X.Y., Large eddy simulation of
    turbulent open channel flow with heat transfer at high
    Prandtl numbers, Acta Mechanica, 170, 227-246, 2004.
    Wang L.L., Large eddy simulation theory and it’s
    application, Jounral of Hohai University (Natural
    Sciences), 32, no.3, 2004.
    Wang S.J., Mujumdar A.S., A comparative study of five low
    Reynolds number models for impingement heat transfer,
    Applied Thermal Engineering, 25, 31-44, 2005.
    Xu C. Y., Chen L. W., Lu X. Y. Large-eddy simulation of the
    compressible flow past a wavy cylinder , Journal of fluid
    mechanics, 665, 238-273, 2010.
    Yang Y. T., Peng H. S., Numerical study of pin-fin heat
    sink with un-uniform fin height design, International
    Journal of Heat and Mass Transfer, 51, 4788-4796, 2008.
    Yu G., Avital E. J., William J. J. R., Large eddy
    simulation of flow past free surface piercing circular
    cylinders, Journal of fluids engineering transactions of
    the ASME, (10), 101304, 2008.
    Ziegler D. P., Boundary conditions for lattice Boltzmann
    simulations, J. Stat. Phys. 71, 1171-1180, 1993.
    Zang Y., Street R. L., Koseff J.R., A dynamic mixed subgrid-
    scale model and its application to turbulent
    recirculating flow. Physics of fluids, 6, 4057-4059, 1993
    Zou Q., He X., Luo L.-S, and Dembo M., Boundary flow
    condition analysis for the three-dimensional lattice
    Boltzmann model. J. stat. Phys., 87, 115-123, 1997.
    Zhou X., Luo K. H. , Williams J. J. R., Study of density
    effects in turbulent buoyant jets using large-eddy
    simulation theory, Computation Fluid Dynamics , (15) :
    9521201, 2001.
    Zu Y.Q., Yan Y.Y. and Maltson J., Numerical study on
    stagnation point heat transfer by jet impingement in a
    confined narrow gap, Journal of Heat transfer, 131,
    094504, 2009.
    張兆順 (Zhang Zhao Shun)、崔桂香(Cui Gui Xiang)、許春曉(Xu
    Chun Xiao),「湍流大渦數值模擬的理論與應用」,清華大學出版社,
    2008.
    何雅玲、王勇、李廣,「格子Boltzmann方法的理論與應用(Lattice
    Boltzmann Method:Theory and Applications)」,科學出版社,北
    京,2008.
    郭照立、鄭楚光,「格子Boltzmann方法的原理與應用(Theory and
    Applications of Lattice Boltzmann Method)」,科學出版社,北
    京,2008.
    陶文銓,「數值熱傳學」,西安交通大學出版社,1988.
    任玉新、陳海昕,「計算流體力學基礎」,清華大學出版社,2006

    下載圖示 校內:2017-06-28公開
    校外:2017-06-28公開
    QR CODE