簡易檢索 / 詳目顯示

研究生: 古瑋庭
Gu, Wei-Ting
論文名稱: 都會工業區有害空氣污染物排放特徵暨暴露風險評估研究
Carcinogenic Air Toxics Emission Profile and Risk Assessment in the Industrial Metropolitan Area
指導教授: 蔡俊鴻
Tsai, Jiun-Horng
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 181
中文關鍵詞: 都會工業區有害空氣污染物排放量推估AERMOD個人終身致癌風險致癌負荷
外文關鍵詞: air toxics, AERMOD, population exposure, risk assessment
相關次數: 點閱:100下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要目的為探討工業都會區排放有害空氣污染物(HAPs)特徵及其潛在對民眾暴露影響。研究方法乃篩選致癌潛勢較高HAPs為目標污染物(苯、甲醛、1,3丁二烯、砷、DPM、2,3,7,8-TCDD),參考國內排放清冊、SPECIATE4.4指紋資料庫,推估工業都會區、港埠區域之各項活動排放量,應用擴散模式模擬污染物濃度分佈,推估民眾潛在暴露風險。此外,考量不同排放源管制策略情境之效果,本研究亦探討各類排放源、目標污染物物所致暴露風險之空間分布特徵。
    研究結果顯示,研究區域內揮發性HAPs (苯、甲醛、1,3丁二烯)排放主要來源為移動源,微粒HAPs(砷、2,3,7,8-TCDD)排放主要來源為固定源,柴油微粒(DPM) 於港埠區域排放量較高。依據各物種致癌因子計算其排放量致癌毒性權重結果顯示,柴油微粒致癌毒性權重最高( >95%),汽油車排放污染物主要影響由1,3-丁二烯所致,移動源排放致癌毒性權重占比最高為柴油大貨車。固定源排放致癌毒性權重占比最高行業為鋼鐵業,其次為石油及煤製品業;影響潛勢最高物種為砷(約占35%),其次為甲醛(占23%)。港埠區域排放影響潛勢最高為遠洋船舶(67% ),主要物種為DPM。研究區域總致癌毒性權重以港埠區域排放相對重要性最高(占66%),主要關切物種為柴油微粒。
    解析有害空氣污染物排放源與大氣濃度分布空間分布特徵顯示,移動源所致高值多位於省道、市區、港埠區域,固定源多分布於工業區。整體言之,目標工業都會區內有害空氣污染物環境濃度超過環境濃度限值之項目,主要以移動源排放比例較高之物種較多,砷、柴油微粒增量濃度僅在排放源附近高於環境濃度限值,影響範圍較小。苯、甲醛、1,3-丁二烯之大氣濃度增量主要來自移動源排放(>80%),砷、柴油微粒增量濃度主要由港埠區域排放源所致,固定源排放2,3,7,8-TCDD比例遠大於移動源及港埠區。各情境不同物種增量濃度依序為 柴油微粒 > 苯 > 甲醛 > 1,3丁二烯 > 砷 > 2,3,7,8-TCDD,不同情境之致癌風險依序為 柴油微粒 > 1,3丁二烯 > 苯 > 甲醛 > 砷 > 2,3,7,8-TCDD;研究結果顯示柴油微粒於本研究案例(工業都會區、港埠區域) 之大氣濃度增量值較高,亦為重要潛在健康衝擊風險之有害空氣污染物。
    解析研究區域內不同排放源之潛在健康衝擊風險顯示,港埠區域排放之健康風險衝擊最高,其次為移動源排放,固定源排放所致健康衝擊風險較低,影響範圍亦較小。模擬濃度之致癌風險值低於可接受風險值(<10-4) 之區域多位於東側,靠近港埠區域則風險值增高,潛在最高風險值約為2700x10-6 ,高於可接受風險值。模擬研究區域內之港埠區域、固定源、移動源排放減量潛在成效,管制移動源、港埠區域排放源應為優先對策。

    This study investigated that the air toxics profiles from mobile sources, stationary sources, and the operations in port in an industrial metropolitan area in Taiwan. Benzene, formaldehyde, 1, 3-butadiene, arsenic, 2,3,7,8-TCDD, and diesel particulate matter (DPM) are selected as target air toxics due to their toxicity. Emissions of the air toxics were calculated by emission factors and activity from these souces and verified by inventory database. AERMOD model was applied to simulate the airborne the air toxics concentration which was uased to evaluate cancer risk. The potential impact on population caused by various souces was also evaluated in this study. The results of emission estimation showed that the emissions of benzene, 1,3-butadiene, and formaldehyde mainly attributed from mobile sources. DPM was emitted from port operations and most of arsenic and 2,3,7,8-TCDD were emitted from stationary sources in this study area. DPM is the pollutant which posted the highest cancer risk among all six toxics, and following by 1,3-butadiene, benzene, formaldehyde, arsenic, and 2,3,7,8-TCDD. The dominate sources of DPM were ocean-going vessels and desiel trucks. In the view of population impact, emission reduction from mobile sources may lead a lower cancer burden than those from stationary sources or port operation

    中文摘要 I Extended Abstract III 誌謝 VI 目錄 VIII 表目錄 XII 圖目錄 XV 第一章 前言 1 1-1 研究源起 1 1-2 研究目的與內容 2 第二章 文獻回顧 3 2-1 有害空氣污染物排放特性 3 2-1-1 移動源有害空氣污染物排放特徵 3 2-1-2 固定源有害空氣污染物排放特徵 5 2-1-3 有害空氣污染物排放來源及占比 7 2-1-4 小港區有害空氣污染物排放特徵 8 2-2 有害空氣污染物排放量推估 16 2-2-1 排放量推估基本方法 16 2-2-2 排放係數資料庫 17 2-3 空氣品質模式於空氣污染管制策略應用 22 2-3-1 AERMOD簡介 22 2-3-2 固定源模擬案例 27 2-3-3 移動源模擬案例 28 2-3-4 港埠區模擬案例 29 2-3-5 模式性能評估 30 2-4 有害空氣污染物暴露風險評估 33 2-4-1 美國有害空氣污染物暴露評估(NATA) 34 2-4-2 加州有害空氣污染物暴露評估(MATES) 35 2-4-3 國內外相關暴露評估案例 36 第三章 研究方法 40 3-1 研究架構 40 3-2 研究地區與模擬情境設定 43 3-2-1 研究區域背景資訊 43 3-2-2 模擬情境設定 45 3-3 小港區基準年排放量推估 52 3-3-1 移動源排放量推估 52 3-3-2 固定源排放量推估 54 3-3-3 港埠區排放量推估 54 3-4 各情境排放量推估 63 3-4-1 許可排放量情境 63 3-4-2 自然成長情境 63 3-4-3 管制對策情境 64 3-5 AERMOD擴散模式模擬 71 3-5-1 排放量空間分配 71 3-5-2 氣象資料 71 3-5-3 地形資料 72 3-5-4 模式性能評估 73 3-6 環境衝擊評析方法 76 3-6-1 排放量致癌毒性權重計算 76 3-6-2 有害空氣污染物濃度水準分布 76 3-6-3 個人終身致癌風險計算 77 3-6-4 致癌負荷分析 77 第四章 結果與討論 80 4-1 各排放源有害空氣污染物排放特徵 80 4-1-1 移動源有害空氣污染物 80 4-1-2 固定源有害空氣污染物 82 4-1-3 港埠區有害空氣污染物 83 4-1-4 綜合評析 83 4-2 各情境有害空氣污染物排放量 91 4-2-1 允許排放量下有害空氣污染物排放量影響 91 4-2-2 民國109年排放量推估結果 93 4-2-3 空氣污染防制計劃書管制策略於有害空氣污染物減量效益 96 4-2-4 綜合評析 99 4-3 各情境之有害空氣污染物濃度分布 112 4-3-1 不同排放源所致有害空氣污染物濃度影響 112 4-3-2 各情境有害空氣污染物濃度空間分布 116 4-3-3 AERMOD模擬增量濃度與監測值比對分析 120 4-3-4 小結 121 4-4 個人終身致癌風險評估 140 4-4-1 個人終身致癌風險 140 4-4-2 各物種致癌風險空間分布 143 4-4-3 各排放源致癌風險空間分布 145 4-4-4 小結 146 4-5 致癌負荷評估 160 4-5-1 各物種潛在致癌人口空間分布 160 4-5-2 各排放源潛在致癌人口空間分布 163 4-5-3 小結 164 第五章 結論與建議 170 5-1 結論 170 5-2 建議 173 參考文獻 174 英文文獻 174 中文文獻 179

    英文文獻
    1. Abril, G. A., S. C. Diez, M. L. Pignata and J. Britch (2016). "Particulate matter concentrations originating from industrial and urban sources: Validation of atmospheric dispersion modeling results." Atmospheric Pollution Research 7(1): 180-189.
    2. Abrutytė, E., A. Žukauskaitė, R. Mickevičienė, V. Zabukas and T. Paulauskienė (2014). "Evaluation of NOxemission and dispersion from marine ships in Klaipeda sea port." Journal of Environmental Engineering and Landscape Management 22(4): 264-273.
    3. A.M. kotrikla, K. Dimou, M. Korras–carraca and G. Biskos(2013). "AIR QUALITY MODELLING IN THE CITY OF MYTILENE, GREECE." 13th International Conference on Environmental Science and Technology:0665.
    4. Gibson, M. D., S. Kundu and M. Satish (2013). "Dispersion model evaluation of PM2.5, NOx and SO2 from point and major line sources in Nova Scotia, Canada using AERMOD Gaussian plume air dispersion model." Atmospheric Pollution Research 4(2): 157-167.
    5. Jia, C. and J. Foran (2013). "Air toxics concentrations, source identification, and health risks: An air pollution hot spot in southwest Memphis, TN." Atmospheric Environment 81: 112-116.
    6. Kumar, A., S. Dixit, C. Varadarajan, A. Vijayan and A. Masuraha (2006). "Evaluation of the AERMOD dispersion model as a function of atmospheric stability for an urban area." Environmental Progress 25(2): 141-151.
    7. Li, P. C. and H. W. Ma (2016). "Using risk elasticity to prioritize risk reduction strategies for geographical areas and industry sectors." J Hazard Mater 302: 208-216.
    8. Li, P. C., H. C. Shih and H. W. Ma (2015). "Assessing the transfer of risk due to transportation of agricultural products." Chemosphere 120: 706-713.
    9. Lim, S. R., C. W. Lam and J. M. Schoenung (2010). "Quantity-based and toxicity-based evaluation of the U.S. Toxics Release Inventory." J Hazard Mater 178(1-3): 49-56.
    10. Logue, J. M., M. J. Small and A. L. Robinson (2011). "Evaluating the national air toxics assessment (NATA): Comparison of predicted and measured air toxics concentrations, risks, and sources in Pittsburgh, Pennsylvania." Atmospheric Environment 45(2): 476-484.
    11. Luciano Morsellia, S. Z. S. M. (1993). "The presence and distribution of heavy metals in municipal solid waste incinerators." Toxicological & Environmental Chemistry 37(3-4).
    12. Ma, J., H. Yi, X. Tang, Y. Zhang, Y. Xiang and L. Pu (2013). "Application of AERMOD on near future air quality simulation under the latest national emission control policy of China: A case study on an industrial city." Journal of Environmental Sciences 25(8): 1608-1617.
    13. Martinez, A., S. N. Spak, N. T. Petrich, D. Hu, G. R. Carmichael and K. C. Hornbuckle (2015). "Atmospheric dispersion of PCB from a contaminated Lake Michigan harbor." Atmos Environ (1994) 122: 791-798.
    14. Misra, A., M. J. Roorda and H. L. MacLean (2013). "An integrated modelling approach to estimate urban traffic emissions." Atmospheric Environment 73: 81-91.
    15. Mokhtar, M. M., M. H. Hassim and R. M. Taib (2014). "Health risk assessment of emissions from a coal-fired power plant using AERMOD modelling." Process Safety and Environmental Protection 92(5): 476-485.
    16. Myers, J. L., T. Phillips and R. L. Grant (2015). "Emissions and ambient air monitoring trends of lower olefins across Texas from 2002 to 2012." Chem Biol Interact 241: 2-9.
    17. Nagpure, A. S., B. R. Gurjar, V. Kumar and P. Kumar (2016). "Estimation of exhaust and non-exhaust gaseous, particulate matter and air toxics emissions from on-road vehicles in Delhi." Atmospheric Environment 127: 118-124.
    18. OEHHA (2014). "Air Toxics Hot Spots Program Risk Assessment Guidelines."
    19. Perugu, H., H. Wei and Z. Yao (2016). "Integrated data-driven modeling to estimate PM2.5 pollution from heavy-duty truck transportation activity over metropolitan area." Transportation Research Part D: Transport and Environment 46: 114-127.
    20. Raaschou-Nielsen, O., R. Beelen, M. Wang, G. Hoek, Z. J. Andersen, B. Hoffmann, M. Stafoggia, E. Samoli, G. Weinmayr, K. Dimakopoulou, M. Nieuwenhuijsen, W. W. Xun, P. Fischer, K. T. Eriksen, M. Sorensen, A. Tjonneland, F. Ricceri, K. de Hoogh, T. Key, M. Eeftens, P. H. Peeters, H. B. Bueno-de-Mesquita, K. Meliefste, B. Oftedal, P. E. Schwarze, P. Nafstad, C. Galassi, E. Migliore, A. Ranzi, G. Cesaroni, C. Badaloni, F. Forastiere, J. Penell, U. De Faire, M. Korek, N. Pedersen, C. G. Ostenson, G. Pershagen, L. Fratiglioni, H. Concin, G. Nagel, A. Jaensch, A. Ineichen, A. Naccarati, M. Katsoulis, A. Trichpoulou, M. Keuken, A. Jedynska, I. M. Kooter, J. Kukkonen, B. Brunekreef, R. S. Sokhi, K. Katsouyanni and P. Vineis (2016). "Particulate matter air pollution components and risk for lung cancer." Environ Int 87: 66-73.
    21. Richard A. Wadden (1986). "Source Discrimination of Short-Term Hydrocarbon Samples Measured Aloft." Environ. Sci. Technol. 20: 473-483.
    22. Rood, A. S. (2014). "Performance evaluation of AERMOD, CALPUFF, and legacy air dispersion models using the Winter Validation Tracer Study dataset." Atmospheric Environment 89: 707-720.
    23. Rowangould, G. M. (2015). "A new approach for evaluating regional exposure to particulate matter emissions from motor vehicles." Transportation Research Part D: Transport and Environment 34: 307-317.
    24. Sanchez de la Campa, A. M., D. Sanchez-Rodas, Y. Gonzalez Castanedo and J. D. de la Rosa (2015). "Geochemical anomalies of toxic elements and arsenic speciation in airborne particles from Cu mining and smelting activities: influence on air quality." J Hazard Mater 291: 18-27.
    25. Seangkiatiyuth, K., V. Surapipith, K. Tantrakarnapa and A. W. Lothongkum (2011). "Application of the AERMOD modeling system for environmental impact assessment of NO2 emissions from a cement complex." Journal of Environmental Sciences 23(6): 931-940.
    26. Singh, D., G. T. Johnson and R. D. Harbison (2015). "Human health risk characterization of petroleum coke calcining facility emissions." Regul Toxicol Pharmacol 73(3): 706-711.
    27. South Coast Air Quality Management District (2015). "Multiple Air Toxics Exposure Study in the South Coast Air Basin."
    28. Tadano, Y. S., G. C. Borillo, A. F. Godoi, A. Cichon, T. O. Silva, F. B. Valebona, M. R. Errera, R. A. Penteado Neto, D. Rempel, L. Martin, C. I. Yamamoto and R. H. Godoi (2014). "Gaseous emissions from a heavy-duty engine equipped with SCR aftertreatment system and fuelled with diesel and biodiesel: assessment of pollutant dispersion and health risk." Sci Total Environ 500-501: 64-71.
    29. Tam, B. N. and C. M. Neumann (2004). "A human health assessment of hazardous air pollutants in Portland, OR." J Environ Manage 73(2): 131-145.
    30. Tartakovsky, D., D. M. Broday and E. Stern (2013). "Evaluation of AERMOD and CALPUFF for predicting ambient concentrations of total suspended particulate matter (TSP) emissions from a quarry in complex terrain." Environ Pollut 179: 138-145.
    31. U.S. Department of Transportation (2011) "Health Risk Assessment for the Port of Long Beach Pier S Redevelopment Project."
    32. U.S. EPA (2014). "SPECIATE Version 4.4 Database Development Documentation." EPA Contract No. EP-D-08-100.
    33. U.S. EPA (2015). "Technical Support Document-EPA’s 2011 National-scale Air Toxics Assessment."
    34. U.S. EPA (2015). " Air Toxic Emissions from On-road Vehicles in MOVES2014." EPA-420-R-15-019.
    35. U.S. EPA (2015). " Speciation Profiles and Toxic Emission Factors for Non-road Engines." EPA-420-R-15-021.
    36. U.S. EPA (2011). " An Overview of Methods for EPA’s National-Scale Air Toxics Assessment."
    37. Vallamsundar, S., J. Lin, K. Konduri, X. Zhou and R. M. Pendyala (2016). "A comprehensive modeling framework for transportation-induced population exposure assessment." Transportation Research Part D: Transport and Environment 46: 94-113.
    38. Venkatram, A., V. Isakov, R. Seila and R. Baldauf (2009). "Modeling the impacts of traffic emissions on air toxics concentrations near roadways." Atmospheric Environment 43(20): 3191-3199.
    39. Vilavert, L., M. J. Figueras, M. Schuhmacher, M. Nadal and J. L. Domingo (2014). "Formaldehyde: a chemical of concern in the vicinity of MBT plants of municipal solid waste." Environ Res 133: 27-35.
    40. Wilson, S., K. Burwell-Naney, C. Jiang, H. Zhang, A. Samantapudi, R. Murray, L. Dalemarre, L. Rice and E. Williams (2015). "Assessment of sociodemographic and geographic disparities in cancer risk from air toxics in South Carolina." Environ Res 140: 562-568.
    41. Yu, H. and A. L. Stuart (2016). "Exposure and inequality for select urban air pollutants in the Tampa Bay area." Sci Total Environ 551-552: 474-483.
    42. Zou, B., J. G. Wilson, F. B. Zhan and Y. Zeng (2009). "Spatially differentiated and source-specific population exposure to ambient urban air pollution." Atmospheric Environment 43(26): 3981-3988.
    中文文獻
    1. 田湘薇(2013),台南都會區車輛使用酒精汽油排放有害空氣污染物之影響研究,國立成功大學環境工程研究所碩士論文。
    2. 行政院環保署(2015),固定污染源空氣污染物危害影響評估暨消費性產品揮發性有機物管制推動計畫,EPA-103-FA12-03-A125。
    3. 行政院環保署(2015),港埠區空氣污染物排放推估手冊。
    4. 行政院環保署(2015),港埠區污染排放清冊建置及管制策略研擬,EPA-103-FA13-03-A250。
    5. 行政院環保署(2014),港埠區空氣污染物減量策略推動與成效評估計畫,EPA-102-FA13-03-A200。
    6. 行政院環保署(2014),固定污染源戴奧辛及重金屬調查及管制計畫,EPA-103-FA12-03-A054。
    7. 行政院環保署(2014),推動地方政府建立空氣污染排放量推估制度,EPA-103-FA-03-A064。
    8. 行政院環保署(2014),檢討空氣污染物排放清冊及排放趨勢與分佈查詢更新計畫,EPA-102-FA11-03-A075。
    9. 行政院環保署(2014),固定源空氣污染物危害影響評估暨消費性產品揮發性有機物管制推動計畫,EPA-103-FA12-03-A125。
    10. 行政院環保署(2010),固定污染源有機性有害性空氣污染物管制策略研訂及推動計畫,EPA-98-FA12-03-A154。
    11. 行政院國家科學委員會專題研究計畫(2005),運用風險評估方法評估鋼鐵業粒污染物排放管制標準之可行性研究,NSC93-EPA-Z-110-001。
    12. 行政院環保署(1993),台灣北、中部地區受體模式建立與應用研究(一),EPA-82-E3F1-09-01。
    13. 李德倫(2006),鹽水蜂炮等民俗活動對空氣品質之影響,國立成功大學環境工程研究所碩士論文。
    14. 科技部專題研究計畫(2015),都會區汽機車使用酒精汽油排放有機毒性空氣污染物與大氣濃度分佈特性研究,101-2221-E-006-160-MY3。
    15. 高雄市政府環境保護局(2015),高雄市政府空氣污染防制計畫書(104~109年版)。
    16. 高雄市政府環境保護局(2015), 103-104年固定污染源許可管制計畫。
    17. 高雄市政府環境保護局(2015),港埠區污染減量暨綠色運輸推動計畫。
    18. 高雄市政府環境保護局(2014),103年高雄市臨海工業區鄰近區域居民健康風險評估計畫。
    19. 高雄市政府環境保護局(2015),103-104年戴奧辛、有害金屬稽查管理暨細懸浮微粒檢測業務。
    20. 高薇喻(2011),多重污染源簡易暴露評估方法之研究,國立台灣大學環境工程研究所博士論文。
    21. 黃慈閔(2014),推動酒精汽油策略對都會區有害空氣污染物改善之研究,國立成功大學環境工程研究所碩士論文
    22. 台灣港務股份有限公司(2014),台灣商港環境監測報告。
    23. 盧彥廷(2015),都會區汽油車量排放對鄰近區域大氣有害空氣污染物濃度之影響,國立成功大學環境工程研究所碩士論文。
    24. 蔡欣汝(2015),應用AERMOD模式分析都會區汽油車使用酒精汽油排放有機毒性空氣污染物之空間分布特性,國立成功大學環境工程研究所碩士論文
    25. 賴旻韓(2009),新竹科學園區砷空氣污染之空間性影響及風險評估,國立交通大學環境工程研究所碩士論文。
    26. 環保署/國科會空污防制科研合作計畫(2006),高屏空品區臭氧空氣品質不良成因探討與前驅物污染物質來源分析,NSC-94-EPA-Z-006-003。
    27. 環保署/國科會空污防制科研合作計畫(2003),工業都會區污染源有機性有害空氣污染物排放特徵與排放係數調查研究,NSC92-EPA-Z-242-001。

    下載圖示 校內:2021-08-20公開
    校外:2021-08-20公開
    QR CODE