簡易檢索 / 詳目顯示

研究生: 曾奕焯
Tseng, I-Cho
論文名稱: 以擋板間的往復流動促進微流體混合之研究
Enhancement of microfluidic mixing using reciprocal flow over baffles
指導教授: 吳志陽
Wu, Chih-Yang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 77
中文關鍵詞: 擋板往復流動微混合器
外文關鍵詞: baffle, microfluidic, reciprocal
相關次數: 點閱:160下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文中選用簡單的T型結構,並在主流道加2個擋板,來探討各種週期性的暫態注入方式對混合效果的影響。採用SU-8厚膜光阻以微影製程在矽晶圓上製作微混合器之母模,再以液態聚二甲基矽氧烷(polydimethysiloxane,PDMS)翻製微混合器主結構,接著與另一片PDMS接合,即完成實驗所需的微混合器。再加上矽膠管與兩個微量式注射幫浦構成系統,這兩個微量式注射幫浦可隨時間調配供應流體。影像擷取系統包含光學顯微鏡、數位攝影機、影像擷取卡,與電腦連結,將流體在流道中流動與混合的情況記錄下來,並截取出灰階值,由灰階值去求得混合效果。並用熱流數值軟體模擬計算流場狀態,以實驗及模擬去研究注入模式、流速大小及週期長短對混合的影響。結果顯示:(一)有擋板較無擋板的混合效果來的好,(二)往復流動的混合效果比穩態好,(三)就所選的三個模式中,以同相等流速、推拉時間比二比一的混合效果最佳,(四)Strouhal數的大小與混合效果的優劣受注入模式影響,會隨注入組合不同呈現不同趨勢的變化。

    In this work, we investigate the effects of baffles and periodic infusion on the mixing in a simple “T” channel. We used the SU-8 thick film photoresist on the silicon wafer to fabricate the structure of the micromixers by photolithogrphy. Casting of polydimethysiloxane(PDMS)was followed to mold the SU-8 pattern. Another PDMS with three holes was used to bond the first patterned PDMS together. Then, we obtained the experimental micromixer. The fluid flow system consists of the micromixer, pipes and two micro-syringe pumps. The two pumps supply the two kinds of fluids to the micromixer at time variable rates. An image capture system, including an optical microscope, a CCD camera, an image capture card and a personal computer, was set up. The visualization of the mixing process and the grayscale level of the mixing fluids are obtained by the system. Mixing efficiency was evaluated by calculating grayscale level of the fluids flowing through the micromixer. We also study mixing flow by the CFD-ACE+. Study the effect of infusion mode, fluid velocity and period by experiment and simulation. The results show that (i) the baffles can make the fluid mixing better, (ii) the mixing effect of reciprocal flow is better then steady flow, (iii) the mixing efficiency of the infusion in which both inlets keep the same velocity in phase and time ratio of infusion to withdraw is 2:1 is superior to the other infusions, (iv) the dependence of the mixing effect on Strouhal number does not show a general trend for the different infusions considered.

    中文摘要……………………………………………………………………………………i 英文摘要……………………………………………………………………………………ii 誌謝…………………………………………………………………………………………iv 目錄…………………………………………………………………………………………v 表目錄……………………………………………………………………………………viii 圖目錄………………………………………………………………………………………ix 符號說明……………………………………………………………………………………xii 第一章 緒論…………………………………………………………………………………1 1-1 研究背景…………………………………………………………………………….1 1-2 文獻回顧…………………………………………………………………………….1 1-3 研究動機…………………………………………………………………………….3 1-4 本文架構…………………………………………………………………………….4 第二章 理論基礎與數值模擬……………………………………………………………..5 2-1 基本假設…………………………………………………………………………….5 2-2 統御方程式與邊界條件…………………………………………………………….6 2-3 無因次分析………………………………………………………………………….7 2-4數值模擬……………………………………………………………………………..9 2-4-1 CFD-GEOM幾何形狀與網格之建立……………………………………………9 2-4-2 CFD-ACE+之邊界條件、收斂條件與運算……………………………………9 2-4-3 CFD-VIEW之後處理……………………………………………………………10 2-5混合指標…………………………………………………………………………10 第三章 微混合器製作及混合效果之觀測………………………………………………12 3-1 光罩製作……………………………………………………………………………12 3-2 母模製作…………………………………………………………………………….12 3-2-1 前處理…………………………………………………………………………12 3-2-2 旋轉塗佈………………………………………………………………………13 3-2-3 軟烤……………………………………………………………………………13 3-2-4 曝光……………………………………………………………………………14 3-2-5 曝後烤…………………………………………………………………………14 3-2-6 顯影……………………………………………………………………………14 3-2-7 硬烤……………………………………………………………………………15 3-3 翻模…………………………………………………………………………………15 3-4 氧電漿處理接合法與管線接合……………………………………………………16 3-5 混合效果之觀察與量測……………………………………………………………16 3-5-1 影像擷取………………………………………………………………………16 3-5-2 微量式注射幫浦………………………………………………………………17 3-5-3 影像分析………………………………………………………………………17 3-5-4 實驗裝置測試…………………………………………………………………17 第四章 實驗與模擬結果及其比較………………………………………………………19 4-1 注入模式選定………………………………………………………………………19 4-2 網格測試……………………………………………………………………………20 4-3 實驗與模擬結果之比較……………………………………………………………21 4-4 擋板有無的影響……………………………………………………………………21 4-5 穩態到週期性穩定的變化…………………………………………………………23 4-6 不同注入模式的影響………………………………………………………………25 4-7 不同雷諾數的影響…………………………………………………………………26 4-8 不同週期的影響……………………………………………………………………27 4-9 流道中各位置的混合………………………………………………………………29 第五章 結論與展望…………………………………………………………………………30 5-1 結論…………………………………………………………………………………30 5-2 展望…………………………………………………………………………………30 參考文獻……………………………………………………………………………………32

    1. Manz, A., Graber, N. and Widmer, H. M., “Miniaturized total analysis systems: a novel concept for chemical sensing,” Sensors and Actuators B: Chemical, Vol. 1, pp. 244-248, 1990.
    2. Schwesinger, N., Frank, T., and Wurmus, H., “A modular microfluid system with an integrated micromixer,” Journal of Micromechanics and Microengineering, Vol. 6, pp. 99-102, 1996.
    3. Koch, M., Chatelain, D., Evans, A. G.R., and Brunnschweiler, A., “Two simple micromixer based on silicon,” Journal of Micromechanics and Microengineering, Vol. 8, pp. 123-126, 1998.
    4. Veenstra, T. T., Lammerink, T. S. J., Elwenspoek, M. C., and van den Berg, A., “Characterization method for a new diffusion mixer applicable in micro flow injection analysis systems,” Journal of Micromechanics and Microengineering, Vol. 9, pp. 199-202, 1999.
    5. Gobby, D., Angeli, P., and Gavriilidis, A., “Mixing characteristics of T-type microfluidic mixers,” Journal of Micromechanics and Microengineering, Vol. 11, pp. 126-132, 2001.
    6. Johnson, T. J., Ross, D., and Locascio, L. E., “Rapid microfluidic mixing,” Analytical Chemistry, Vol. 74, pp. 45-51, 2002.
    7. Strook, A. D., Dertinger, S. K. W., Ajdari, A., Mezic, I., Stone, H. A., and Whitesides, G. M., “Chaotic mixer for microchannels,” Science, Vol. 295, pp. 647-651, 2002.
    8. Liu, R. H., Stremler, M. A., Sharp, K. V., Olsen M. G., Santiago, J. G., Adrian, R. J., Aref, H., and Beebe, D. J., “Passive mixing in a three-dimensional serpentine microchannel,” Journal of Microelectromechanical Systems, Vol. 9, pp. 190-197, 2000.
    9. Vivek, V., Zeng, Y., and Kim, E. S., “Novel acoustic-wave micromixer,” IEEE International Micro Electro Mechanical System Conference, Miyazaki, Japan, pp. 668-673, January 23-27, 2000.
    10. Yang, Z., Matsumoto, S., Goto, H., Matsumoto, M., and Maeda, R., “Ultrasonic micromixer for microfluidic systems,” Sensors and Actuators A: Physical, Vol. 93, pp. 266-272, 2001.
    11. Lu, L. H., Ryu, K. S., and Liu, c., “A magenetic microstirrer and array for microfluidic mixing,” Journal of Microelectromechanical Systems, Vol. 11, pp. 462-469, 2002.
    12. Tsai, J. H. and Lin L., “Active microfluidic mixer and gas bubble filter driven by thermal bubble micropump,” Sensor and Actuators A: Physical, Vol. 97-98, pp. 665-671, 2002.
    13. Deshmukh, A. A., Liepmann. D., and Pisano, A. P., “Continuous micromixer with pulsatile micropumps ,” Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, USA, 2000.
    14. Glasgow, I., and Aubry, N., “Enhancement of microfluidic mixing using time pulsing,” Journal of Lab on a Chip, Vol. 3, pp. 114-120, 2003.
    15. Branebjerg, J., Fabius, B., and Gravesen, P., “Application of miniature analyzers: from microfluidic components to micro TAS,” Micro Total Analysis Systems Workshop, Enschede, Netherlands, pp. 141-151, 1994.
    16. Lee, S., Lee, H. Y., Lee, I. F. and Tseng, C.Y., “Ink diffusion in water,” European Journal of Physics, Vol. 25, pp. 331-336, 2004.
    17. Lu, L. H., Ryu, K. S., and Liu, C., “A magnetic microstirrer and array for microfluidic mixing,” Journal of Microelectromechanical Systems, Vol. 11, pp. 462-469, 2002.

    下載圖示 校內:2011-07-21公開
    校外:2011-07-21公開
    QR CODE