簡易檢索 / 詳目顯示

研究生: 方乙雯
Fang, Yi-Wen
論文名稱: 奈米碳管及二氧化矽誘發肺臟纖維化之病理研究
Pathologic study on carbon nanotube and silica induced pulmonary fibrosis
指導教授: 張志欽
Chang, Chih-Ching
學位類別: 碩士
Master
系所名稱: 醫學院 - 環境醫學研究所
Department of Environmental and Occupational Health
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 68
中文關鍵詞: 奈米碳管二氧化矽血管內皮前驅細胞循環纖維細胞肺泡二型上皮細胞增生纖維細胞病灶
外文關鍵詞: CNT, silica, EPC, fibrocytes, alveolar type II cells, fibroproliferative foci
相關次數: 點閱:58下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 原發性肺纖維化是一種慢性間質性肺病,肺纖維化漸進持續形成,以致預後不良。我們先前的研究發現暴露奈米碳管和二氧化矽皆會誘發肺纖維化,且肺二型上皮細胞可轉化並貢獻超過四成的新生肺纖維細胞。本研究主要釐清肺泡二型上皮細胞、血管內皮前驅細胞和循環纖維細胞如何參與奈米碳管和二氧化矽誘發肺纖維化的形成及其空間浸潤分佈關係。
    使用C57BL6母鼠以口咽吸入方式暴露奈米碳管80 μg/mouse或二氧化矽512 μg/mouse,分別至不同時間點(2週、4週、6週)後犧牲。利用流式細胞儀分析技術和免疫螢光染色肺連續切片,觀察組織血管內皮前驅細胞、循環纖維細胞和肺泡二型的浸潤及轉化,其對肺纖維化的貢獻和彼此空間分佈相關性。
    結果顯示暴露奈米碳管後,發現第6週之血管內皮前驅細胞和循環纖維細胞分別有27.30% 和25.75%參與纖維化中纖維細胞數目的擴張,導致纖維化的發生。在暴露奈米碳管的組別,觀察到血管內皮前驅細及循環纖維細胞同時轉移至受損區域轉化成纖維細胞及纖維母細胞,且彼此交錯,肺泡二型上皮細胞及其轉化的纖維細胞也參雜在其中,形成了增生纖維細胞病灶,但這種明顯的病灶變化在暴露二氧化矽的組別並沒有發生。此外,在暴露奈米碳管後CD133+細胞數目與纖維轉化相關蛋白活化因子p-Smad2、Ras和Snail表現量會隨著暴露時間而增加。總結,奈米碳管暴露,造成血管內皮前驅細胞和循環纖維細胞的肺部浸潤並轉化成纖維細胞和纖維母細胞,這些細胞和肺泡二型上皮細胞及其轉化的的纖維細胞一起形成增生纖維細胞病灶,這可能是人類特發性肺纖維化重要特徵之一的纖維母細胞病灶的前驅。但二氧化矽暴露並不造成增生纖維細胞病灶的形成。

    The goal of our research is aimed to describe the involvement of alveolar type II cells, EPCs and fibrocytes during CNT and silica-induced pulmonary fibrosis and their spatial relationship.Female C57BL/6 mice were oropharyngeally aspirated with 80 μg SWCNT or silica 512 μg.Flow cytometry analysis indicated that EPCs and fibrocytes were involved in the expansion of fibroblasts, contributing to 27.30% and 25.75% of total fibroblasts, respectively, at 6 wks post exposure to CNT. Importantly, EPCs and fibrocytes were found to be interspersed with each other, and with type II cells and their derived fibroblast in the same foci in the CNT group. However, these did not happen in the silica exposure group. In summary, EPCs and fibrocytes infiltrate the injury lung and are turned into fibroblasts/myofibroblasts, together with type II cells-transitioned fibroblasts, to form fibroproliferative foci, which may later become myofibroblastic foci. There is no obvious fibroproliferative foci found in silica-exposed mice.

    中文摘要 i 英文摘要 ii 誌謝 vi 目錄 vii 圖目錄 x 第一章、序論 1 1.1 前言 1 1.2 研究目的 3 第二章、文獻探討 4 2.1奈米微粒 4 2.1.1 奈米科技概述 4 2.1.2 單層奈米碳管 5 2.1.3 二氧化矽 6 2.2 奈米微粒與健康效應 7 2.2.1單層奈米碳管誘發肺部損傷 7 2.2.2 二氧化矽誘發肺部損傷 8 2.3 纖維細胞 11 2.4 肺泡二型上皮細胞 13 2.5 血管內皮前驅細胞 14 2.6 循環纖維細胞 16 2.7特發性肺纖維化 19 2.7.1 特發性肺纖維化之流行病學研究與潛在危險因子 19 2.7.2特發性肺纖維化之病理特徵 20 2.8比較各種動物肺纖維化模式的病理特徵 22 第三章、材料與方法 24 3.1 材料 24 3.1.1 單層奈米碳管、二氧化矽 24 3.1.2 實驗動物 24 3.2 實驗方法 24 3.2.1 奈米微粒懸浮液溶液之製備 24 3.2.2 小鼠暴露奈米微粒 25 3.2.3小鼠肺臟單細胞懸浮液製備及流式細胞儀分析 25 3.2.4肺部組織固定及組織病理學 26 3.2.5 馬森三色染色(Masson’s trichrome stain) 27 3.2.6螢光免疫組織染色 28 3.2.7 統計分析 29 第四章、結果 30 4.1 小鼠暴露單層奈米碳管後肺部組織結構與膠原蛋白沉積之情形 30 4.2 血管內皮前驅細胞於小鼠暴露單層奈米碳管或二氧化矽所誘發肺部總纖維細胞擴張之貢獻比例 30 4.3 血管內皮前驅細胞於小鼠暴露單層奈米碳管或二氧化矽所誘發肺部總肌纖維母細胞擴張之貢獻比例 30 4.4 肺泡二型上皮細胞於小鼠暴露單層奈米碳管或二氧化矽後於肺組織中增生之比例 31 4.5 循環纖維細胞於小鼠暴露單層奈米碳管或二氧化矽所誘發肺部總纖維細胞擴張之貢獻比例 31 4.6 循環纖維細胞於小鼠暴露單層奈米碳管或二氧化矽所誘發肺部總肌纖維母細胞擴張之貢獻比例 31 4.7 單層奈米碳管或二氧化矽暴露之小鼠對血管內皮前驅細胞、上皮細胞間質轉型和循環纖維細胞於肺部浸潤之情形 32 4.8 小鼠暴露單層奈米碳管後血管內皮前驅細胞中p-Smad2、Ras及Snail之表現情形 33 第五章、討論 34 第六章、結論 37 第七章、參考文獻 38 第八章、圖表 48 第九章、附錄 67

    Adamson I, Young L, Bowden D. 1988. Relationship of alveolar epithelial injury and repair to the induction of pulmonary fibrosis. Am J Pathol 130: 377-383.
    Akira S, Masafumi H, Patrick M, Takahide N. 2018. The Role of TGF-β Signaling in Lung Cancer Associated with Idiopathic Pulmonary Fibrosis.Int J Mol Sci19(11), 3611.
    Albrecht C, Knaapen AM, Becker A, Höhr D, Haberzettl P, Van Schooten FJ, et al. 2005. The crucial role of particle surface reactivity in respirable quartz-induced reactive oxygen/nitrogen species formation and APE/Ref-1 induction in rat lung. Respir Res 6:129-144.
    Arciniegas E, Frid MG, Douglas IS, Stenmark KR. 2007. Perspectives on endothelial-to-mesenchymal transition: potential contribution to vascular remodeling in chronic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 293(1): L1-8.
    Asahara T, Takahashi T, Masuda H, Kalka C, Chen D, Iwaguro H, et al. 1999. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J 18(14): 3964-3972.
    Ayumi S, Tetsu N, Rintaro N, Takeshi K, Takashi U, Rika S, Toshio S, Shin T, Jiro T, Seiichiro S, Yuji T, Atsushi I, Koichiro T. 2016. Prominin-1/CD133 expression as potential tissue-resident vascular endothelial progenitor cells in the pulmonary circulation.Am J Physiol Lung Cell Mol Physiol 310: L1130–L1142.
    Blanco D, Vicent S, Elizegi E, Pino I, Fraga MF, Esteller M, et al. 2004. Altered expression of adhesion molecules and epithelial-mesenchymal transition in silicainduced rat lung carcinogenesis. Lab Invest 84:999-1012.
    Bolton R, Vincent J, Jones A, Addison J, Beckett S. 1983. An overload hypothesis for pulmonary clearance of UICC amosite fibres inhaled by rats. Br J Ind Med 40:264-272.
    Border WA and Noble NA. 1994. Transforming growth factor beta in tissue fibrosis. N Engl J Med 331:1286-1292.
    Brain JD. 1988. Lung macrophages: How many kinds are there? What do they do? Am Rev Respir Dis 137:507-509.
    Brown DM, Wilson MR, MacNee W, Stone V, Donaldson K. 2001. Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol 175(3): 191-199.
    Bucala R, Spiegel L, Chesney J, Hogan M, Cerami A. 1994. Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med 1(1): 71-81.
    Camelo A, Dunmore R, Sleeman MA, Clarke DL. 2014. The epithelium in idiopathic pulmonary fibrosis: breaking the barrier. Front Pharmacol 4: 173.
    Chang CC, Chen CY, Chiu HF, Dai SX, Liu MY, Yang CY. 2011. Elastases from inflammatory and dendritic cells mediate ultrafine carbon black induced acute lung destruction in mice. Inhal Toxicol 23:616–626.
    Chang CC, Tsai ML, Huang HC, Chen CY, Dai SX. 2012. Epithelial-mesenchymal trainsition contributes to SWCNT-induced pulmonary fibrosis. J Nanotoxicol 6: 600-610.
    Chesney J, Bacher M, Bender A, Bucala R. 1997. The peripheral blood fibrocyte is a potent antigen-presenting cell capable of priming naïve T cell in situ. Proc Natl Acad Sci UAS 94(12): 6307-6312.
    Coralynn Sack, Ganesh Raghu. 2018. Idiopathic pulmonary fibrosis: unmasking cryptogenic environmental factors. Eur Respir J 10.1183/13993003.01699.
    Daniel R. 1998. Nitric oxide downregulates lung macrophage inflammation cytokine production. Ann Thorac Surg 66:313-317.
    Degryse AL, Lawson WE. Progress towards improving animal models for idiopathic pulmonary fibrosis. 2011. Am J Med Sci 341:444-449.
    Desai O, Winkler J, Minasyan M, Herzog EL. 2018. The Role of Immune and Inflammatory Cells in Idiopathic Pulmonary Fibrosis. Front Med 5: 43.
    Dong J, Ma Q. 2016. Myofibroblasts and lung fibrosis induced by carbon nanotube exposure. Part Fibre Toxicol 13:60.
    Eickelberg O, Selman M. 2010. Update in Diffuse Parenchymal Lung Disease 2009. Am J Respir Crit Care Med. 181(9):883-888.
    Flaherty KR, Travis WD, Colby TV, Toews GB, Kazerooni EA, Gross BH, et al. 2001. Histopathologic variability in usual and nonspecific interstitial pneumonia. Am J Respire Crit Care Med 164:1722-1727.
    Frid MG, Kale VA, Stenmark KR. 2002. Mature vascular endothelium can give rise to smooth muscle cells via endothelial-mesenchymal transdifferentiation: in vitro analysis. Circ Res 90(11): 1189-1196.
    Garcia CK. 2011. Idiopathic pulmonary fibrosis: update on genetic discoveries. Proc Am Thorac Soc 8(2):158-62.
    García-de-Alba C, Becerril C, Ruiz V, Gonazlez Y, Reyes S, Garcia-Alvarez J, et al. 2010. Expression of matrix metalloproteases by fibrocytes: possible role in migration and homing. Am J Respir Crit Care Med 182: 1144-1152.
    Grundmann F, Scheid C, Braun D, Zobel C, Reuter H, Schwinger RH, et al. 2007. Differential increase of CD34, KDR/CD34, CD133/CD34 and CD117/CD34 positive cells in peripheral blood of patients with acute myocardial infarction. Clin Res Cardiol 96(9): 621-627.
    Gu B-H, Madison MC, Corry D, Kheradmand F. 2018. Matrix remodeling in chronic lung diseases. Matrix Biol 73: 52-63.
    Hartlapp I, Abe R, Saeed RW, Peng T, Voelter W, Bucala R, et al. 2001. Fibrocytes induced an antigiogenic phenotype in cultured endothelial cells and promote angiogenesis in vivo. FASEB J 15: 2215-2224.
    Hashimoto N, Jin H, Liu T, Chensue SW, Phan SH. 2004. Bone marrow-derived progenitor cells in pulmonary fibrosis. J Clin Invest 113(2): 243-252.
    Hashimoto N, Phan SH, Imaizumi K, Mastuo M, Nakashima H, Kawabe T, et al. 2010. Endothelial-mesenchymal transition in bleomycin-induced pulmonary fibrosis. Am J Respir Cell Mol Biol 43(2): 161-172.
    Hinz B. 2017. Formation and function of the myofibroblast during tissue repair. J Investig Dermatol 127, 526–537.
    Hsieh WY, Chou CC, Ho CC, Yu SL, Chen HY, Chou H-YE, et al. 2012. Single-walled carbon nanotubes induce airway hyperreactivity and parenchymal injury in mice. American Journal of Respiratory Cell and Molecular Biology 46: 257–267.
    Huax F. 2007. New developments in the understanding of immunology in silicosis. Curr Opin Allergy Clin Immunol 7(2): 168-173.
    Hughes J, Weill H, Rando R, Shi R,McDonald A, McDonald J. 2001. Cohort mortality study of North American industrial sand workers. II. Case-referent analysis of lung cancer and silicosis death. Ann Occup Hyg 45: 201-207.
    Hutchinson J, Fogarty A, Hubbard R, McKeever T. 2015. Global incidence and mortality of idiopathic pulmonary fibrosis: a systematic review. Eur Respir J 46: 795-806.
    Johnston CJ, Driscoll KE, Finkelstein JN, Baggs R, O'Reilly MA, Carter J, et al. 2000. Pulmonary chemokine and mutagenic responses in rats after subchronic inhalation of amorphous and crystalline silica. Toxicol Sci 56: 405-413.
    Jones A, McMillan C, Johnston A, McIntosh C, Cowie H, Parker I, Donaldson K. 1988. Animal studies to investigate the deposition and clearance of inhaled mineral dusts. Final Report on CEC Contract 7248/33/026. Edinburgh: IOM report TM/88/05.
    Kaissling B, Le Hir M. 2008. The renal cortical interstitium : morphological and functional aspects. Histochem Cell Biol 130(2): 247-262.
    Kim KK, Dotson MR, Agarwal M, Yang J, Bradley PB, Subbotina N, Osterholzer JJ, Sisson TH. 2018. Efferocytosis of apoptotic alveolar epithelial cells is sufficient to initiate lung fibrosis. Cell Death Dis 9(11): 1056.
    Kim KK, Kugler MC, Wolters PJ, Robillard L, Galvez MG, Brumwell AN, et al. 2006. Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. Proc Natl Acad Sci USA 103(35): 13180-13185.
    Knaapen AM, Albrecht C, Becker A, Höhr D, Winzer A, Haenen GR, et al. 2002. DNA damage in lung epithelial cells isolated from rats exposed to quartz: role of surface reactivity and neutrophilic inflammation. Carcinogenesis 23:1111-1120.
    Knudsen L, Ruppert C, Ochs M. 2017. Tissue remodelling in pulmonary fibrosis. Cell Tissue Res 367(3):607-626.
    Lai CC, Wang CY, Lu HM, Chen L, Teng NC, Yan YH, et al. 2012. Idiopathic pulmonary fibrosis in Taiwan - a population-based study. Am J Respir Crit Care Med 106: 1566-1574.
    Lam CW, James JT, McCluskey R, Hunter RL. 2004. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation.Toxicol Sci 77:126-134.
    Liu YJ, Morris GF, Lei WH, Hart CE, Lasky JA, Brody AR, rt al. 1997. Rapid activation of PDGF-A and -13 expression at sites of lung injury in asbestos-exposed rats. Am J Respir Cell Mol Biol 17:129-140.
    Massague J. 1990. The transforming growth factor-beta family. Annu Rev Cell Bio 6:597-641.
    McDonald JC, McDonald AD, Hughes JM, Rando RJ, Weill H. 2005. Mortality from lung and kidney disease in a cohort of North American industrial sand workers: an update. Ann Occup Hyg 49:367-373.
    Mehrad B, Burdick MD, Zisman DA, Keane MP, Belperio JA, Strieter RM. 2007. Circulating peripheral blood fibrocytes in human fibrotic interstitial lung disease. Biochem Biophys Res Commun 353(1): 104-108.
    Moblus-Winkler S, Hollriegel R, Schuler G, Adams V. 2009. Endothelial progenitor cells:implications for cardiovascular disease. Cytometry A 75(1): 25-37.
    Moeller A, Gilpin SE, Ask K, Cox G, Cook D, Gauldie J, et al. 2009. Circulating fibrocytes are an indicator of poor prognosis in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 179(7): 588-594.
    Mori L, Bellini A, Stacey MA, Schmidt M, Mattoli S. 2005. Fibrocytes contribute to the myofibroblast population in wounded skin and originate from the bone marrow. Exp Cell Res 304: 81-90.
    Morikawa M, Derynck R, Miyazono K. 2016. TGF-β and the TGF-β family: Context-dependent roles in cell and tissue physiology. Cold Spring Harb Perspect Biol 8(5).
    Muhle H, Bellmann B, Heinrich U. 1988. Overloading of lung clearance during chron exposure of experimental animals to particles. Ann Occup Hyg (suppl. 1): 141-147.
    Nataraj D, Ernst A, Kalluri R. 2010. Idiopathic pulmonary fibrosis is associated with endothelial to mesenchymal transition. Am J Respir Cell Mol Biol 43(2): 129-130.
    Oberdörster G, Oberdorster E, Oberdörster J. 2005. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7): 823-839.
    Park EJ, Roh J, Kim SN, Kang MS, Han YA, Kim Y, et al. 2011. A single intratracheal instillation of single-walled carbon nanotubes induced early lung fibrosis and subchronic tissue damage in mice. Arch Toxicol 85:1121–1131.
    Plantier L, Cazes A, Dinh-Xuan AT, bancal C, Marchand-Adam S, Crestani B. 2018. Physiology of the lung in idiopathic pulmonary fibrosis. Eur Respir Rev 27(147).
    Raghu G, Weycker D, Edelsberg J, Bradford WZ, Oster G. Incidence and prevalence of idiopathic pulmonary fibrosis. 2006. Am J Respir Crit Care Med 174: 810-6.
    Ross R, Raines EW, Bowen-Pope DF. 1986. The biology of platelet-derived growth factor. Cell 46:155-169.
    Saito A, Nagase T. 2015. Hippo and TGF-β interplay in the lung field. AmJ Physiol Lung Cell Mol Physiol 309, L756-L767.
    Schins RPF, Knaapen AD, Cakmak GD, Shi T, Weishaupt C, Borm PJA. 2002. Oxidant-induced DNA damage by quartz in alveolar epithelial cells. Mutat Res 517:77-86.
    Schmidt M, Sun G, Stacey MA, Mori L, Mattoli S. 2003. Identification of circulating fibrocytes as precursors of bronchial myofibroblasts in asthma. J Immunol 171(1): 380-389.
    Seiler F, Rehn B, Rehn S, Bruch J. 2004. Different toxic, fibrogenic and mutagenic effects of four commercial quartz flours in the rat lung. Int J Hyg Environ Health 207:115-124.
    Sellamuthu R, Umbright C, Roberts JR, Young SH, Richardson D, McKinney W, et al. 2017. Molecular mechanisms of pulmonary response progression in crystalline silica exposed rats. Inhal Toxicol 29(2): 53-64.
    Selman M, Thannickal VJ, Pardo A, Zisman DA, Martinez FJ, Lynch JP. 2004. Idiopathic pulmonary fibrosis: pathogenesis and therapeutic approaches. Drugs 64: 405-430.
    Sgalla G, Lovene B, Calvello M, Ori M, Varone F, Richeldi L. 2018. Idiopathic pulmonary fibrosis: pathogenesis and management. Respir Res 19: 32.
    Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ, Yin M, et al. 1992. Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 359: 693-699.
    Shvedova AA, Kisin ER, Mercer R, Murray AR, Johnson VJ, Potapovich AI, et al. 2005. Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol 289:L698 –L708.
    Sime PJ, Marr RA, Gauldie D, Xing Z, Hewlett BR, Graham FL, et al. 1998. Transfer of tumor necrosis factor-β to rat lung induces severe pulmonary inflammation and patchy interstitial fibrogenesis with induction of transforming growth factor-beta 1 and myofibroblasts. Am J Pathol 153:825-832.
    Spiethoff A, Wesch H, Wegener K, Klimisch HJ. 1992. The effects of Thorotrast and quartz on the induction of lung tumors in rats. Health Phys 63(1):101-110.
    Steenland K, Mannetje A, Boffetta P, Stayner L, Attfied M, Chen J, et al. 2001. Pooled exposure-response analysis and risk assessment for lung cancer in 10 cohorts of silica-exposed workers: an IARC multicentre study. CCC 12(9):773-784.
    Strieter RM. Pathogenesis and natural history of usual interstitial pneumonia. 2005. Chest 128:526S-532S.
    Strieter RM, Gomperts BN, Keane MP. 2007. The role of CXC chemokines in pulmonary fibrosis. J Clin Invest 117(3): 549-556.
    Szmitko PE, Fedak PW, Weisei RD, Stewart DJ, Kutryk MJ, Verma S. 2003. Endothelial progenitor cells:new hope for a broken heart. Circ 107(24):3093-3100.
    Tashiro J, Rubio GA, Limper AH, Williams K, Elliot SJ, Ninou I, et al. 2017. Exploring animal models that resemble idiopathic pulmonary fibrosis. Front Med 4: 118.
    Tran CL, Jones AD, Donaldson K. 1997. Overloading of particles and fibres. Ann Occup Hyg 41(suppl. 1):237-243.
    Urbich C, Dimmeler S. 2004. Endothelial progenitor cells: characterization and role in vascular biology. Circ Res 95(4): 343-353.
    Urbich C, Dimmeler S. 2004. Endothelial progenitor cells functional characterization. Trends Cardiovasc Med 14(8): 318-322.
    Warheit DB, Hansen JF, Yuen IS, Kelly DP, Snajdr SI, Harsky MA. 1997. Inhalation of concentrations of low toxicity dusts in rats results in impaired pulmonary clearance mechanisms and persistent inflammation. Toxicol Appl Pharmacol 145(1):10-22.
    Warheit DB, Laurence BR, Reed KL, Roach DH, Reynolds GAM, Webb TR. 2004. Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Science 77:117-125.
    Yamada M, Kubo H, Ishizawa K, Kobayashi S, Shinkawa M, Sasaki H. 2005. Increased circulating endothelial progenitor cells in patients with bacterial pneumonia: evidence that bone marrow derived cells contribute to lung repair. Thorax 60(5): 410-413.
    Yamaguchi M, Hira S, Tanaka Y, Sumi T, Miyajima M, Mishina T, et al. 2017. Fibroblastic foci, covered with alveolar epithelia exhibiting epithelial-mesenchymal transition, destroy alveolar septa by disrupting blood flow in idiopathic pulmonary fibrosis. Lab Invest 97:232-242.
    Zhu Z, Yang G, Yang Y, Yang J, Gao A, Niu P, et al. 2013. Suppression of thioredoxin system contributes to silica-induced oxidative stress and pulmonary fibrogenesis in rats. Toxicol Lett 289-294.

    下載圖示 校內:2024-02-13公開
    校外:2024-02-13公開
    QR CODE