| 研究生: |
朱家慶 Chu, Chia-Ching |
|---|---|
| 論文名稱: |
氣態氘化鈉分子X-A的激發光譜研究和硫化鋅奈米粒子的合成研究 The Excitation Spectroscopy of the NaD X-A Transitions and the Synthesis of ZnS Nanoparticles |
| 指導教授: |
黃守仁
Whang, Thou-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 氘化鈉 、雷射光譜 、激發光譜 、硫化鋅 、奈米粒子 |
| 外文關鍵詞: | NaD, Laser spectroscopy, Excitation spectroscopy, Zinc sulfide, Nano particles |
| 相關次數: | 點閱:75 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Part I 氣態氘化鈉分子X-A的激發光譜研究
在本實驗中,利用一道染料雷射光偵測氘化鈉(NaD)分子的A1Σ+激發光譜,並觀測到共75個激發光譜訊號,此外利用實驗數據推測得A1Σ+能態位能曲線谷底能量(Te)約為22703.976 cm-1。
在計算工作方面,對於氘化鈉分子的X1Σ+能態躍遷到A1Σ+能態(v'=0-25, J'=0-15)有較完整的計算,並且將計算數值與實驗數值做比較;對於其量子能態的熱分布也做了相關的計算;最後還有法蘭克-康登因子的計算,包含該躍遷的波長數據等。
Part II 硫化鋅奈米粒子的合成研究
本實驗嘗試五種硫離子源來合成硫化鋅粒子,分別是硫脲、過硫酸銨、硫代硫酸鈉、硫氰酸鉀和硫化鈉,並使用硫酸鋅作為鋅離子來源。採用的合成方法為化學沉澱法,結果顯示硫脲、硫代硫酸鈉和硫化鈉是可以成功合成硫化鋅的,此外再以這三種化合物做延伸的實驗。在硫脲部分嘗試了三種不同的溶劑、改變不同反應濃度和添加不同比例的保護劑等實驗,可以合成出球狀且粒徑約150-200 nm的硫化鋅粒子。在硫代硫酸鈉的部分嘗試了兩種不同的溶劑、改變不同反應濃度和添加不同比例的保護劑等實驗,相同的也可以合成出球狀且粒徑約150-200 nm的硫化鋅粒子。然而在硫化鈉部份的結果就沒這麼理想,合成出的硫化鋅並非球狀,且粒徑分析與實驗條件的相關性並不高。實驗合成的硫化鋅粒子再利用XRD鑑定後可以確認使用硫脲合成的結果是具有少量的纖維鋅礦結構,主要還是以閃鋅礦結構所構成;而在硫代硫酸鈉和硫化鈉合成的結果顯示以閃鋅礦結構為主。
Part I The Excitation Spectroscopy of the NaD X-A Transitions
In this study, we used a UV dye laser to observe the A1Σ+ excitation spectrum of the sodium deuterium molecules (NaD), and had observed all over 75 excitation signals. Furthermore, we used experimental data to infer that the energy at the bottom of potential energy curve (Te) of A1Σ+ is about 22703.976 cm-1.
In the calculation works, we had done a more complete calculation about the sodium deuterium molecules, X1Σ+ A1Σ+ (v'=0-25, J'=0-15) transition, and compared with the experimental data. Also, we had carried out the thermal distribution of quantum states of the sodium deuterium molecules. Finally, we had calculated the Franck-Condon factors, including the wavelength of each transition.
Part II The Synthesis of ZnS Nanoparticles
In this study, we had tried five kinds of sulfide sources, thiourea, ammonium persulfate, sodium thiosulphate, potassium thiocyanate, and sodium sulfide respectively, and then used zinc sulfate as the source of zinc ion. The synthesis method we chose was chemical precipitation method, and the experimental results reveal that using thiourea, sodium thiosulphate, and sodium sulfide can synthesize zinc sulfide successfully. Moreover, we used these three kinds of compounds to do further experiments. In the thiourea part, we had tried three kinds of solvents, changed different reaction concentrations, and added different ratio of protection agent, and can synthesize spherical zinc sulfide, whose particle size is about 150-200 nm. In the sodium thiosulphate part, we also tried three kinds of solvents, changed different reaction concentrations, and added different ratio of protection agent, and, similarly, can synthesize spherical zinc sulfide, whose particle size is about 150-200 nm as well. However, in the sodium sulfide part, the result is not ideal. The zinc sulfide particles are not sphericity, and the particle size analysis results are not quite correlated with the experimental conditions. Finally, we made use of XRD to identify the structures of zinc sulfide. The structure of the zinc sulfide, synthesized by thiourea, is formed with small parts of wurtzite and major parts of sphalerite. The structure of the zinc sulfide synthesized by sodium thiosulphate and sodium sulfide chiefly belong to sphalerite.
1. W. Demtroder, Laser Spectroscopy, Springer-Verlag, Berlin, 1981.
2. G. Herzberg, Molecular Spectra and Molecular Structure: Vol.1 Spectra of Diatomic Molecules, Robert E. Krieger Publishing Co., Malabar, Florida, 1989.
3. H. Y. Huang, Ph. D. thesis, National Cheng Kung University, Taiwan, 2010.
4. F. P. Pesl, S. Lutz, K. Bergmann, Eur. Phys. J. D, 10, 247, 2000.
5. S. Lochbrunner, M. Motzkus, G.. Pichler, K. L. Kompa, P. Hering, Z.Phys. D, 38, 35, 1996.
6. R. E. Olson, B. Liu, J. Chem. Phys., 73, 2817, 1980.
7. H. S. Lee, Y. S. Lee, G. H. Jeung, Chem. Phys. Lett., 46, 325, 2000.
8. T. L. Lu, Master thesis, National Cheng Kung University, Taiwan, 2003.
9. Y. Y. Chang, Master thesis, National Cheng Kung University, Taiwan, 2000.
10. M. H. Liao, Master thesis, National Cheng Kung University, Taiwan, 2001.
11. K. L. Wu, Master thesis, National Cheng Kung University, Taiwan, 2002.
12. C. H. Yung, Master thesis, National Cheng Kung University, Taiwan, 2003.
13. J. M. Chiang, Master thesis, National Cheng Kung University, Taiwan, 2004.
14. Y. H. Hsiao, Master thesis, National Cheng Kung University, Taiwan, 2006.
15. H. C. Lin, Master thesis, National Cheng Kung University, Taiwan, 2006.
16. R. E. Olson, M. Kimura, Phys. Review A, 32, 3092, 1985.
17. J. T. Bahns, Ph. D. thesis, The University of Iowa, U.S.A., 1983.
18. E. S. Sachs, J. Hinze, N. H. Sabelli, J. Chem. Phys., 62, 3377, 1975.
19. M. Giroud, O. Nedelec, J. Chem. Phys., 73, 4151, 1980.
20. K. V. L. N. Sastry, E. Herbst, F. C. De Lucia, J. Chem. Phys., 75, 4753, 1981.
21. B. K. Taylor, P. R. Newman, J. Chem. Phys., 118, 8770, 2003.
22. D. A. McQuarrie, Quantum Chemistry, University Science Books and Oxford University Press, California, 1983.
23. I. N. Levine, Physical Chemistry, McGraw-Hill, New York, 2003.
24. P. Juncar, J. Pinard, J. Hamon, A. Chartier, Metrologia, 17, 77, 1981.
25. B. Edlén, Metrologia, 2, 71, 1966.
26. S. Gerstenkorn, P. Luc, Rev. Phys. Appl., 14, 791, 1979.
27. H. Salami, A. J. Ross, J. Mol. Spectroscopy, 233, 157, 2005.
28. E. M. Baum, H. D. Knox, T. R. Miller, Nuclides and Isotopes: Chart of the Nuclides, KAPL inc. and Lockheed Martin Co., New York, 2002.
29. S. K. Hsu, Master thesis, National Chung Hsing University, Taiwan, 2000.
30. P. Yu, Master thesis, National Chung Hsing University, Taiwan, 2001.
31. S. R. Huang, Master thesis, National Chung Hsing University, Taiwan, 2004.
32. 丁勝懋, 雷射工程導論, 中央出版社, 台北市, 1993.
33. M. Takeda, Y. Kanatani, H. Kishishita, H. Uede, Yellow Emission thin Film Electroluminescence Displays, Proc. SPIE, 34, 1983.
34. P. D. Rack and P. H. Holloway, The Structure, Device Physics, and Materials Properties of Thin Film Electroluminescent Displays, Materials Science and Engineering Reports, 21, 171, 1998.
35. W. M. Yen, Shigeo Shionoya, Hajime Yamamoto, Phosphor handbook, CRC Press, Boca Raton, 2007.
36. H. W. Leverenz, An Introduction to Luminescence of Solids, John Wiley & Sons, New York, 1950.
37. W. M. Yen, M. J. Weber, Inorganic Phosphor: compositions, preparation and optical properties, CRC Press, Boca Raton, 2004.
38. J. S. Reed, Principles of Ceramics Processing, 2nd Edition, Wiley-Interscience, New York, 1995.
39. H. S. Hsu, Master thesis, National Cheng Kung University, Taiwan, 2002.
40. T. S. Jan, Master thesis, National Cheng Kung University, Taiwan, 2010.
41. C. J. Brinker, G. W. Scherer, Sol-gel science: the physics and chemistry of sol-gel processing, Academic Press, Boston, 1990.
42. S. S. Tan, Master thesis, National Cheng Kung University, Taiwan, 2004.
43. R. P. Rao, J. Electrochem. Soc., 143, 189, 1996.
44. S. Y. Hsu, Master thesis, Tatung University, Taiwan, 2006.
45. M. Khanpour, A. Morsali, J. Inorg. Organomet. Polym, 20, 692, 2010.
46. S. F. Hong, Master thesis, Feng Chia University, Taiwan, 2004.
47. M. Salavati-Niasari, F. Davar, H. Seyghalkar, E. Esmaeili, N. Mir, CrystEngComm, 13, 2948, 2011.
48. M. Uehara, S. Sasaki, Y. Nakamura, C. G. Lee, K. Watanabe, H. Nakamura, H. Maeda, CrystEngComm, 13, 2973, 2011.
49. H. W. Chen, Master thesis, Chung Yuan Christian University, Taiwan, 2003.
50. Y. Shi, F. H. Xue, C. Y. Li, Q. D. Zhao, Z. P. Qu, Materials Research Bulletin, 46, 483, 2011.
51. F. Long, W. M. Wang, Z. K. Cui, L. Z. Fan, Z. G. Zou, T. K. Jia, Chemical Physics Letters, 462, 84, 2008.
52. L. Qi, G. B. Mao, J. P. Ao, Applied Surface Science, 254, 5711, 2008.
53. D. H. Lee, J. Y. Jung, E. J. Bae, T. J. Lee, S. O. Ryu, C. H. Chang, Journal of the Korean Physical Society, 53, 102, 2008.
54. N. K. Allouche, T. B. Nasr, N. T. Kamoun, C. Guasch, Materials Chemistry and Physics, 123, 620, 2010.
55. C. C. Wu, K. W. Cheng, W. S. Chang, T. C. Lee, Journal of the Taiwan Institute of Chemical Engineers, 40, 180, 2009.
56. X. L. Zhang, J. Qin, Z. Y. Chen, M. Zhang, J. R. Li, W. M. Shi, L.J. Wang, Proceedings of SPIE, 7995, 799512, 2010.
57. R. Sahraei, G. M. Aval, A. Goudarzi, Journal of Alloys and Compounds, 466, 488, 2008.
58. Powder Diffraction File, Joint Committee on Powder Diffraction Standards (JCPDS) (International Center for Diffraction Data, Swarthmore, PA). File no. 36-1450; 05-0566, 1995.
59. A. Ennaoui, M. Bär, J. Klaer, T. Kropp, R. Sáez-Araoz, M. Lux-Steiner, Prog. Photovolt. Res. Appl., 14, 499, 2006.
60. 曹茂盛, 關長斌, 徐甲強, 奈米材料導論, 學富文化事業有限公司, 台北市, 2002.
61. 高濂, 孫靜, 劉陽橋, 奈米粉體的分散及表面改性, 五南圖書出版股份有限公司, 台北市, 2005.
62. 張立德, 牟季美, 奈米材料和奈米結構, 滄海書局, 台中市, 2002.