簡易檢索 / 詳目顯示

研究生: 林琖超
Lin, Chan-Chao
論文名稱: 晶貌效應對氧化鐵奈米礦物光催化特性之影響
Morphology effect on the photocatalytic activity of nano iron oxides
指導教授: 陳燕華
Chen, Yen-Hua
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 103
中文關鍵詞: 赤鐵礦磁鐵礦晶貌奈米粒子奈米棒奈米管光催化
外文關鍵詞: hematite, magnetite, morphology, nano-particle, nano-rod, nano-tube, photocatalysis
相關次數: 點閱:89下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究中使用熱水合成法合成出三種不同形狀的赤鐵礦奈米礦物,分別為奈米粒子、奈米棒及奈米管,再藉由碳熱還原法將奈米赤鐵礦還原成奈米磁鐵礦;探討不同晶貌的奈米赤鐵礦及奈米磁鐵礦彼此間光催化效應之差異,並嘗試解釋各自之光催化機制與評估最有效益的種類/型態。
      由XRD的圖譜及TEM的結果可以得知我們確實成功地合成出赤鐵礦奈米粒子、奈米棒與奈米管,也成功地將上述樣品還原成奈米磁鐵礦,並且維持其晶貌;BET的結果顯示:粒徑較小的擁有較高的比表面積,而管狀的比表面積又比棒狀晶貌來的高;SQUID的結果顯示:奈米赤鐵礦系列為弱鐵磁性;由UV-VIS的結果可以得知其能隙落在1.9~2.2 eV,屬於可見光的範圍,因此可用於可見光波段的光催化反應;奈米赤鐵礦及奈米磁鐵礦的光催化速率為:奈米粒子>奈米管>奈米棒,即隨著能隙的加大和比表面積的增加其相對應的光催化速率變快,說明了光催化效率與晶貌的改變是有關聯性的。本實驗合成得到的氧化鐵奈米礦物之光催化效果與前人結果互相比較,證明氧化鐵奈米礦物是有潛力應用於環境污染整治上。

      In this study, three crystal morphologies of hematites (nano-particle, nano-rod, and nano-tube) are synthesized by a hydrothermal method. After that, the magnetites with different morphologies are prepared using carbon reduction method. The photocatalytic activity and mechanism of these nano-hematites and nano-magnetites are discussed. The photocatalytic efficiency of nano-hematites and nano-magnetites with various crystal morphologies are also evaluated.
      From the XRD and TEM results, we can successfully prepare nano-hematite and nano-magnetites with morphologies of particle, rod, and tube. The BET results indicate that the specific surface area is followed the order: nano-particle > nano-tube > nano-rod. All the three crystal shapes of nano-hematites show a weak ferro-magnetism by the SQUID measurement. The band gap of nano-hematites is within the range of 1.9 eV~2.1 eV, which is in the visible-light wavelength and can be used as photocatalysts under visible- light irridiation.
      The photocatalytic activity of nano-hematites and nano-magnetites is: nano-particle > nano-tube > nano-rod, which increases with the increasing specific surface area and band gap. The present results suggest that the photocatalytic efficiency is affected by the crystal morphology. In addition, the photocatalytic ability of these nano-hematites is comparable with that listed in the literatures. This indicates that the nano-hematite is a potential candidate in the application of the environmental treatment.

    中文摘要 I Abstract II 誌謝 IV 目錄 V 表目錄 VII 圖目錄 VIII 第一章 緒論 1 第二章 研究背景 3 2.1 材料之簡介 3 2.1.1赤鐵礦 3 2.1.2 磁鐵礦 4 2.1.3亞甲基藍 5 2.2奈米效應 6 2.2.1表面效應 6 2.2.2小尺寸效應 7 2.3能隙理論 8 2.4光催化相關理論 10 2.4.1光催化機制 10 2.4.2光催化動力學模式 12 2.4.3濃度測量原理 13 2.5奈米鐵氧化合物之合成 14 2.6熱水法長晶機制 16 2.6.1長晶機制簡述 16 2.6.2影響熱水法製備奈米赤鐵礦形狀之因素 18 2.6.3 赤鐵礦系列熱水法長晶機制 19 2.7磁性簡介 21 2.7.1磁性 21 2.7.2磁性分類 22 2.7.3磁滯曲線 26 第三章 研究方法 28 3.1實驗流程 28 3.2合成方法 31 3.3分析儀器 34 3.3.1 X-ray粉末繞射儀 34 3.3.2穿透式電子顯微鏡 35 3.3.3掃描式電子顯微鏡 35 3.3.4比表面積分析儀 36 3.3.5熱重-差分析儀 41 3.3.6超導量子干涉儀 43 3.3.7紫外光-可見光光譜儀 44 3.4光催化實驗 44 3.4.1暗室吸附實驗 45 3.4.2可見光光催化實驗 45 第四章 研究結果與討論 47 4.1奈米赤鐵礦之特性分析 47 4.1.1 X光繞射儀分析結果 47 4.1.2穿透式電子顯微鏡分析結果 52 4.1.3超導量子干涉儀分析結果 57 4.1.4紫外光/可見光光譜以分析結果 59 4.1.5比表面積分析結果 61 4.1.6熱重-熱差分析儀分析結果 64 4.2奈米管長晶機制之探討 66 4.3奈米赤鐵礦之光催化結果分析 68 4.4磁鐵礦系列特性分析 75 4.4.1 X光繞射光譜儀分系結果 75 4.4.2穿透式電子顯微鏡分析結果 77 4.4.3比表面積分析儀結果 79 4.4.4紫外光-可見光光譜以分析結果 81 4.5 奈米磁鐵礦光催化結果分析 83 第五章 結論 88 參考文獻 91

    [1] 林有銘,“專題報導:功能性粉末奈米光觸媒”,科學發展,第408期,第1~8頁,2006。
    [2] D. Avisar, I. Horovitz,L. Lozzi, F. Ruggeri, M. Baker, M.-L. Abel, H. Mamane, “Impact of water quality on removal of carbamazepine in natural waters by N-doped TiO2 photo-catalytic thin film surfaces”, Journal of Hazardous Materials, 2012.
    [3] Q.S.Li, K.Domen, S.Naito, T.Onishi, K.Tamaru,“Photocatalytic Synthesis and photodecomposition of ammonia over SrTiO3 and BaTiO3 based catalysts” , Chemistry Letters, 321-324, 1983.
    [4] S.N. Frank, A.J. Bard,“ Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders”, Journal of Physical Chemistry, 81 (15), 1484–1488. , 1977
    [5] J.K. Leland, A.J. Bard, “Photochemistry of colloidal semiconducting iron oxide polymorphs”, Journal of Physical Chemistry, 91 (19), 5076–5083, 1987.
    [6] H. Yoneyama, S. Haga, S. Yamanaka, “ Photocatalytic activities of microcrystalline titania incorporated in sheet silicates of clay”, Journal of Physical Chemistry, 93 (12), 4833–4837, 1989.
    [7] K.I. Okamoto, Y. Yamamoto, H. Tanaka, M. Tanaka, A. Itaya, “ Heterogeneous Photocatalytic Decomposition of Phenol over TiO2 Powder”, Bulletin of the Chemical Society of Japan, Vol.58, No.7, 2015-2022, 1985.
    [8] A.H. Shekari, M.S. Razzaghi, “ Influence of Nano Particles on Durability and Mechanical Properties of High Performance Concrete”, Procedia Engineering, Vo.14, 3036–3041, 2011.
    [9] M.H. Zhang, J. Islam, S. Peethamparan,“ Use of nano-silica to increase early strength and reduce setting time of concretes with high volumes of slag”, Cement and Concrete Composites, Vo.34, I. 5, 650–662, 2012.
    [10] W. P. Halperin, “Quantum size effects in metal particles”, Reviews of Modern Physics, Vo.58, 533–606 , 1986.
    [11] M. R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, “Environmental Applications of Semiconductor Photocatalysis.”, Chemical Reviews, 95, 69-96,1995.
    [12] C. C. Hu, T. C. Hsu, S. Y. Lu,“ Effect of nitrogen doping on the microstructure and visible light photocatalysis of titanate nanotubes by a facile cohydrothermal synthesis via urea treatment”, Applied Surface Science, Vo. 280, 171–178, 2013.
    [13] H. Liu, B. Lin, L. He, H. Qu, P. Sun, B. Gao, Y. Chen,“ Mesoporous cobalt-intercalated layered tetratitanate for efficient visible-light photocatalysis”, Chemical Engineering Journal, 215–216, 396–403, 2013.
    [14] H.T. Sun, C. Cantalini, M. Faccio, M. Pelino, M. Catalano L. Tapfer, “Porouss Silica-Coated α-Fe2O3 Ceramics for Humidity Measurement at Elevated Temperature” , American Ceramic Society Vo. 79, I. 4, 927–937, 1996.
    [15] Y.N. Li, P. Zhang, Z.P. Guo, “Preparation of α-Fe2O3 submicro-flowers by a hydrothermal approach and their electrochemical performance in lithium-ion batteries.”, Electrochim, Acta 53, 4213–4218, 2008.
    [16] P.C. Wu1,W.S. Wang, .T. Huang, H.S. Sheu, Y.W. Lo,T.L. Tsai1, D.B.Shieh, C.S.Yeh, “Porous iron oxide based nanorods developed as delivery nanocapsules.”, Chemistry A: European Journal, 13(14), 3878–3885, 2007.
    [17] J.L. Zhang, Y. Wang, H. Ji, Y.G. Wei, N.Z.Wu, B.J. Zuo, “Magnetic nanocomposite catalysts with high activity and selectivity for selective hydrogenation of ortho-chloronitrobenzene”, Journal of Catalysis, 229(1), 114–118, 2005.
    [18] H. Zeng, J. Li, J.P. Liu, Z.L. Wang , S.Sun, “ Exchangecoupled nanocomposite magnets by nanoparticle self-assembly”, Nature 420, 395-398 , 2002.
    [19] R. Wu, J. Qu ,Y. Chen, “ Magnetic powder MnO–Fe2O3 composite—a novel material for the removal of azo-dye from water”, Water Research, 39(4), 630–638,2005.
    [20] Z. Sun, H. Yuan,Z. Liu, B. Han, X. Zhang, “A highly efficient chemical sensor material for H2S: α-Fe2O3 nanotubes fabricated using carbon nanotube templates. Advanced Materials.” Advanced Materials, Vo. 17, 2993–2997, 2005.
    [21] I. Cesar ,A. Kay,José A.G. Martinez,M.Grätzel, “Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight:Nanostructure-directing effect of Si-doping.”, American Chemical Society, Vo. 128(14), 4582–4583,2006.
    [22] T. W. Hamann, “ Splitting water with rust: hematite photoele- ctrochemistry”, Dalton Transactions, Vo. 41, 7830–7834, 2012.
    [23] Z. Zhang, M. F. Hossain, T. Miyazaki, T. Takahashi, “ Gas Phase Photocatalytic Activity of Ultrathin Pt Layer Coated on γ-Fe2O3 Films under Visible Light Illumination”, Environmental Science and Technology, Vo. 44, 4741–4746, 2010.
    [24] H. Guo, A.S. Barnard, “Environmentally dependent stability of low-index hematite surfaces.”, Colloid and Interface Science, Vo. 386, 315–324, 2012.
    [25] D. Zhao, X. Wang, S. Yang, Z. Guo, G. Sheng, “Impact of water quality parameters on the sorption of U(VI) onto hematite”, Journal of Environmental Radioactivity, Vo.103, I. 1, 20–29, 2012.
    [26] G. Quercia, R. Belisario, R. Rengifo, “Reduction of erosion rate by particle size distribution (PSD) modification of hematite as weighting agent for oil based drilling fluids”, Wear, Vo. 266, I. 11–12, 1229–1236, 2009.
    [27] T. Togawa, T. Sano, Y. Wada, T. Yamamoto, M. Tsuji, Y. Tamaura,“ The effect of the crystal orientation on the rate of formation of cation-excess magnetite”, Solid State Ionics, Vo. 89, I. 3–4, 279–286, 1996.
    [28] V. Dediu, E. Arisi, I. Bergenti, A. Riminucci, M. Solzi, C. Pernechele, M. Natali,“ Squid measurement of the Verwey transition on epitaxial (1 0 0) magnetite thin films”, Journal of Magnetism and Magnetic Materials, Vo. 316, I. 2, e721–e723, 2007.
    [29] L. F. Cótica, V. F. Freitas, G. S. Dias, I. A. Santos, S. C. Vendrame, N. M. Khalil, R. M. Mainardes, M. Staruch, M. Jain, “Simple and facile approach to synthesize magnetite nanoparticles and assessment of their effects on blood cells”, Journal of Magnetism and Magnetic Materials, 324, 4, 559–563, 2012.
    [30] S. C. Petitto, K. S. Tanwar, S. K. Ghosec, P. J. Eng, T. P. Trainor, “Surface structure of magnetite (111) under hydrated conditions by crystal truncation rod diffraction”, Surface Science, 604, 13–14, 1082–1093, 2010.
    [31] T.K. Kundua, K. H. Raoa, S.C. Parker, “Atomistic simulation studies of magnetite surface structures and adsorption behavior in the presence of molecular and dissociated water and formic acid.”, Colloid and Interface Science, Volume 295, 364–373, 2006.
    [32] J.C. Rojas, A.K. Bruchey, F. Gonzalez-Lima, “Neurometabolic mechanisms for memory enhancement and neuroprotection of methylene blue.”, Progress in Neurobiology, Vo. 96, 32–45, 2012.
    [33] S. F. Xiong, Z. L. Yin, Z. F. Yuan, W. B. Yan, W. Y. Yang, J. J. Liu, F. Zhang, “Dual-frequency (20/40 kHz) ultrasonic assisted photocatalysis for degradation of methylene blue effluent: Synergistic effect and kinetic study”, Ultrasonics Sonochemistry,Vo.19, I. 4, 756–761, 2012.
    [34] N. Liu, G. Sun, “Photo-degradation of methylene blue in the presence of 2-anthraquinone sulfonate and cyclohexanol”, Dyes and Pigments, Vo.91, I. 2, 215–224, 2011.
    [35] 張立德,牟季美,“奈米材料和奈米結構”,北京科學出版社,2001。
    [36] 李新勇,李數本,“化學進展”,8:231~239,1996。
    [37] 張青紅,高濂,郭景坤,“無機材料學報”,15:929~935,2000。
    [38] 賴炤銘,李錫隆,“奈米材料的特殊效應與應用”, The Chinese Chem. Rev. SOC., TAIPEI, Vo.61, 585~597, 2003.
    [39] J. S. Miller , J. C. Calabrese , H. Rommelmann , S. R. Chittipeddi , J. H. Zhang, W. M. Reiff, A. J. Epstein, “Ferromagnetic Behavior of [ Fe( C5Me5)2]'+[ TCNE]' -. Structural and Magnetic Characterization of Decamethyl ferrocenium Tetracyanoethenide, [ Fe( CSMe5)2]'+[ TCNE]'+*MeCN, and Decamethyl ferrocenium Pentacyanopropenide, [ Fe( C,Me,),]'+[ C3( CN),]-”, Journal of the American Chemical Society, Vo.109, 769-781, 1987.
    [40] D. L. Leslie-Pelecky, R. D. Rieke, “Magnetic Properties of Nanostructured Materials”, Chemistry of Materials, Vo.8, 1770~1783, 1996.
    [41] 李言榮,惲正中,“材料物理學概論”,五南出版社,59~60,2003。
    [42] K. K. Nanda,“ Size-dependent melting of nanoparticles:Hundred years of thermodynamic model”, Pramana - Journal of Physics, Vo.72, No. 4, 2009.
    [43] E. Y. Ivanol, C. Suryanarayana, B. D. Bryskin, “Synthesis of a nanocrystalline W–25 wt.% Re alloy by mechanical alloying”, Materials Science and Engineering: A, 251,255-261, 1998.
    [44] H. Naderi, M.H. Majles Ara, H. Zebarjadan, J. Saydi, A. Javidan, “ Nonlinear response of nano-particles birnessite-type Manganese oxide (γ-MnO2)”, International Journal for Light and Electron Optics, Vo. 124, I. 13, 1560-1563, 2013.
    [45] S. James, “Band Theory and Electronic Properties of Solids” ,Oxford University Press, 2001.
    [46] C. E. Housecroft, A. G. Sharpe, “Inorganic Chemistry”, Harlow: Pearson Education, 2008.
    [47] P. Bhattacharya, “ Semiconductor optoelectronic devices” ,2nd edition, Prentice Hall International, Inc., 2002.
    [48] C. Klingshirn, “Semiconductor Optics”, 167, 2007.
    [49] W. Choi, A. Termin, M. R. Hoffmann, “The role of metal-iondopants in quantum-sized TiO2: correlation betweenphotoreactivity and charge-carrier recombination dynamics”, Journal of Physical Chemistry, 98, 13669 -13679, 1994.
    [50] M. Gratzel, “Photocatalysis Fundamentals and Applications”, Wiley-Interscience, 1989.
    [51] N. Ma, X. Quan, Y. Zhang, S. Chen, H. Zhao,“ Integration of separation and photocatalysis using an inorganic membrane modified with Si-doped TiO2 for water purification”, Journal of Membrane Science, Vo. 335, I. 1–2, 58–67, 2009.
    [52] S. Liana, C. H. A. Tsang, Z. Kang, Y. Liu, N. Wong, S. T. Lee,“ Hydrogen-terminated silicon nanowire photocatalysis: Benzene oxidation and methyl red decomposition”, Materials Research Bulletin, Vo. 46, I. 12, 2441–2444, 2011.
    [53] S. O. Kasap,“Optoelectronics and Photonics: Principles and Practices”, 2012.
    [54] B. Zhao, Y.Li, H. Tong, Y. Zhuo, L. Zhang, J. Shi, C. Chen,“ Study on the reaction rate of sulfite oxidation with cobalt ion catalyst”, Chemical Engineering Science, Vo. 60, I. 3, 863–868, 2005.
    [55] H. Zea, K. Lester, A. K. Datye, E. Rightor, R. Gulotty, W. Waterman, M. Smith,“ The influence of Pd–Ag catalyst restructuring on the activation energy for ethylene hydrogenation in ethylene–acetylene mixtures”, Applied Catalysis A: General, Vo. 282, I. 1–2, 237–245, 2005.
    [56] K. Nakata, A. Fujishima, “TiO2 photocatalysis: Design and applications”, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, Vo.13, I.3, 169–189, 2012.
    [57] L.Tian, Y. Zhao, S. He, M. Wei, X. Duan, “Immobilized Cu–Cr layered double hydroxide films with visible-light responsive photocatalysis for organic pollutants”, Chemical Engineering Journal, 184, 261–267, 2012.
    [58] R. Andreozzi, M. Canterino, R. Marotta, “Fe(III) homogeneous photocatalysis for the removal of 1,2-dichlorobenzene in aqueous solution by means UV lamp and solar light”, Water Research, Vo.40, 3785–3792, 2006.
    [59] M.A. Gondal, M.A. Dastageer, A. Khalil, “Synthesis of nano-WO3 and its catalytic activity for enhanced antimicrobial process for water purification using laser induced photo-catalysis”, Catalysis Communications, 214–219, 2009.
    [60] 蔡金鈴,“以氣相紅外光譜研究 Isopropyl Alcohol 在二氧化鈦光觸媒催化反應器之質傳行為、分解機制與反應動力”,台北科技大學化學工程學系碩士論文,2004。
    [61] M. Anpo, H. Yamashitaa, Y. Ichihashi, S. Ehara, “Photocatalytic reduction of CO2 with H2O on various titanium oxide catalysts.”, Journal of Electroanalytical Chemistry, Vo. 396, 21–26, 1995.
    [62] D. Lawless, N. Serpone, D. Meisel, “Role of hydroxyl radicals and trapped holes in photocatalysis. A pulse radiolysis study”, The Journal of Physical Chemistry, Vo.95, 5166-5170, 1991.
    [63] R. W. Berry, P. M. Hall, M. T. Harris, “Thin Film Technology”, Van Nostrand Reinhold, 2001.
    [64] 鄭玫玲,“金、鉑擔載於二氧化鈦上進行光催化甲醇重組產氫之研究”,中央大學材料系碩士論文,2007。
    [65] N. Serpone, “Relative photonic efficiencies and quantum yield inheterogeneous photocatalysis”, Journal of Photochemistry and Photobiology A: Chemistry, Vo.104, 1-12, 1997.
    [66] M.C. Ortega-Liébana, E. Sánchez-López, J. Hidalgo-Carrillo, A. Marinas, J.M. Marinas, F.J. Urbano,“ A comparative study of photocatalytic degradation of 3-chloropyridine under UV and solar light by homogeneous (photo-Fenton) and heterogeneous (TiO2) photocatalysis”, Applied Catalysis B: Environmental, Vo.127, 316–322, 2012.
    [67] J. Wang ,S. Yin, Q. Zhang, F. Saito, T. Sato,“ Influences of the factors on photocatalysis of fluorine-doped SrTiO3 made by mechanochemical method”, Solid State Ionics, Vo. 172, I. 1–4, 191–195, 2004.
    [68] W. Chu, W.K. Choy, T.Y. So,“ The effect of solution pH and peroxide in the TiO2-induced photocatalysis of chlorinated aniline”, Journal of Hazardous Materials, Vo. 141, I. 1, 86–91, 2007.
    [69] J. An, L. Zhu, N. Wang, Z. Song, Z. Yang, D. Du, H. Tang,“ Photo-Fenton like degradation of tetrabromobisphenol A with graphene-BiFeO3 composite as a catalyst”, Chemical Engineering Journal, Vo. 219, 225–237, 2013.
    [70] J.D. Ingle, R. Crouch, “Spectrochemical Analysis”, Prentice Hall, Englewood Cliffs, 1988.
    [71] R. V. Maikala, “Modified Beer's Law – historical perspectives and relevance in near-infrared monitoring of optical properties of human tissue”, International Journal of Industrial Ergonomics, Vo.40, 125–134, 2010.
    [72] S. Akbar, S.K. Hasanain, N. Azmat, M. Nadeem, “Synthesis of Fe2O3 nanoparticles by new Sol-Gel method and their structural and magnetic characterizations”, arXiv:cond-mat/0408480, 2004.
    [73] K.D. Kim, S.S. Kim, Y.H. Choa, H.T. Kim, “Formation and Surface Modification of Fe3O4 Nanoparticles by Co-precipitation and Sol-gel Method.”, Journal of Industrial and Engineering Chemistry, Vol.13, 1137-1141, 2007.
    [74] C.J. Jia, L.D. Sun, Z.G. Yan, “Single-crystalline iron oxide nanotubes”, Angewandte Chemie Int. Ed.44, 4328–4333, 2005.
    [75] C.J. Jia, L.D. Sun, F. Luo, X.D. Han, L.J. Heyderman, Z.G. Yan, C.H. Yan, K. Zheng, Z. Zhang, M. Takano, N. Hayashi, M. Eltschka, M. Kläui, U. Rüdiger, T. Kasama, L.C. Gontard, R.E.D. Borkowski, G. Tzvetkov, J.Raabe, “Large-Scale Synthesis of Single-Crystalline Iron Oxide Magnetic Nanorings.”, Journal of the American Chemical Society , Vo.130, 16968-16977, 2008.
    [76] H.M. Fan, G.J. You, Y. Li, “Shape controlled synthesis of single-crystalline Fe2O3 hollow nanocrystals and their tunable optical properties.”, The Journal of Physical Chemistry C , Vo.113, 9928–9935, 2003.
    [77] M. Cao, T. Liu, S. Gao, G. Sun, X. Wu, C. Hu, Z.L. Wang, “Single-Crystal Dendritic Micro-Pines of Magnetic α-Fe2O3 : Large-Scale Synthesis, Formation Mechanism, and Properties.”, Angewandte Chemie, Int. Ed. 44, 4197-4201,2005.
    [78] J.Gu, S. Li, E. Wang, Q. Li,G. Sun, R. Xu, H. Zhang, “Single-crystalline α-Fe2O3 with hierarchical structures:Controllable synthesis,formation mechanism and photocatalytic properties.”, Journalof Solid State Chemistry , Vo.182, 1265-1272, 2009.
    [79] H.M. Fan, J.B. Yi, Y. Yang, “Single-crystalline MFe2O4 nanotubes/nanorings synthesized by thermal transformation process for biological applications.”, ACS Nano 2, 2798–2807,2009.
    [80] S.K. Mohapatra, S.E. John, S. Banerjee, “Water photooxidation by smooth and ultrathin α-Fe2O3 nanotube arrays.”, Chemistry of Materials, 3048-3055, 2009.
    [81] L. Pislaru-Danescu, A. Morega, G. Telipan, V. Stoica, “Nanoparticles of ferrofluid Fe3O4 synthetised by coprecipitation method used in microactuation process”, Optoelectronics and Advanced Materials-Rapid Communications Vo.4, 1182-1186, 2010.
    [82] J. H. Wua, S. P. Kob, H. L. Liuc, M. H. Jungd,J. H. Leeb, J. S. Jue, Y. K. Kimb, “Sub 5 nm Fe3O4 nanocrystals via coprecipitation method”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vo.313–314, 268–272, 2008.
    [83] 吳謀泰,“晶體與晶體生長”,徐氏基金會,1968。
    [84] S. V. Verdaguer, “Chemical aspects of the effect of impurities in crystal growth”, Progress in Crystal Growth and Characterization of Materials, Vo. 32, I. 1–3, 75–109, 1996.
    [85] A. Bravais, “Études Cristallographiques”, Gauthier-Villard, 1913.
    [86] J.W. Gibbs, “On the Equilibrium of Heterogeneous Substances”, Collected Works, Longman and Green, 1928.
    [87] G. Wulff, “Zeitschrift für Krishtallographie”, 449-530, 1901.
    [88] J.D.H. Donnay, D. Harker, American Mineralogist, I.22, pp.446, 1937.
    [89] F.C. Frank, “On the Kinematic Theory of Crystal Growth and Dissolution Processes”, Proceedings of An International Conference on Crystal Growth, pp. 411, 1958.
    [90] B. Lv, Y. Xu, Q. Gao, D. Wu, Y. Sun, “ Controllable Synthesis and Magnetism of Iron Oxides Nanorings”, Journal of Nanoscience and Nanotechnology , Vol.10, 1–12, 2010.
    [91] M. Gotic´, G. Drazˇic´, S. Music´, “ Hydrothermal synthesis of α-Fe2O3 nanorings with the help of divalent metal cations, Mn2+, Cu2+, Zn2+ and Ni2+”, Journal of Molecular Structure , Vo.993, 167–17, 2011.
    [92] X. Hu, J. C. Yu, J. Gong, Q. Li, and G. Li, “α-Fe2O3 Nanorings Prepared by a Microwave-Assisted Hydrothermal Process and Their Sensing Properties”, Advanced Materials, Vo.19, 2324–2329, 2007.
    [93] B. Lv, Y. Xu, D. Wu and Y. Sun,“ Single-crystal α-Fe2O3 hexagonal nanorings: stepwise influence of different anionic ligands (F- and SCN- anions)”, Chemical Communications, Vo.47, 967–969, 2011.
    [94] 宛德福,馬興隆,“磁性物理學”,電子科技大學出版社,1994。
    [95] 莊萬發,“超微粒子理論應用”,復漢出版社,1994。
    [96] S Mørup, M F Hansen, C Frandsen, “Magnetic Nanoparticles”, Technical University of Denmark, 439, 2011.
    [97] 金重勳,“磁性技術手冊”,磁性技術協會,2002。
    [98] 溫明鏡,“氧化鐵磁性奈米粒子之合成與特性研究”,國立中正大學化學工程系碩士論文,2000。
    [99] V. Sandu, S. Popa, I. Ivan, E. Sandu, N. Hurduc, I. Nor, “Magnetism and transport properties of gamma-irradiated polymer-CrO2 composites”, Journal of Magnetism and Magnetic Materials, Vo. 322, I. 9–12, 1405–1408, 2010.
    [100] V. Sánchez-Alarcos, V. Recarte, J.I. Pérez-Landazábal, M.A. González, J.A. Rodríguez-Velamazán, “Effect of Mn addition on the structural and magnetic properties of Fe–Pd ferromagnetic shape memory alloys”, Acta Materialia, Vo. 57, I. 14, 4224–4232, 2009.
    [101] T. Chatterji, Y. Su, G. N. Iles, Y. C. Lee, A. P. Khandhar, K. M. Krishnan, “Antiferromagnetic spin correlations in MnO nanoparticles”, Journal of Magnetism and Magnetic Materials, Vo. 322, I. 21, 3333–3336, 2010.
    [102] L. Zhang, D. Xue, C. Gao, “Anomalous magnetic properties of antiferromagnetic CoO nanoparticles”, Journal of Magnetism and Magnetic Materials, Vo. 267, I. 1, 111–114, 2003.
    [103] Y. M. Zhou, W. Q. Zhang, L. P. Zhong, D. S Wang, “ Theoretical prediction of ferrimagnetism in face-centered cubic iron”, Journal of Magnetism and Magnetic Materials, Vo. 145, I.3, L273–L277, 1995.
    [104] W. Wolski, J. Kaczmarek, “ Ferrimagnetism of hydrothermally treated Mn(II)/Fe(III)-hydroxides”, Journal of Magnetism and Magnetic Materials, Vo. 40, I. 1–2, 190–196, 1983.
    [105] Y. D. Zavorotnev, L. I. Medvedyeva, “ Latent paramagnetism in trigonal compounds”, Journal of Magnetism and Magnetic Materials, Vo. 292, 426–432, 2005.
    [106] X. Oudet, “ Paramagnetism: An alternative view II: The Curie constant”, Journal of Magnetism and Magnetic Materials, Vo.98, I.3, 307–332, 1991.
    [107] P.F. de Châtel, “ Diamagnetism”, Encyclopedia of Condensed Matter Physics, 414–417, 2005.
    [108] G. Čı́ka, F. Šeršeňb, L. Dlháňc, “ Diamagnetism of poly (3-dode- cylthiophene) doped with FeCl3”, Journal of Magnetism and Magnetic Materials, Vo. 208, I. 1–2, 78–84, 2000.
    [109] William D. Callister, Jr, “Materials science and engineering an introduction”, John Wiley & Sons, Inc., 659-687, 1996.
    [110] 張文成,洪英彰,“磁性材料”,粉末冶金技術手冊,中華民國粉末冶金協會,458~484,1994。
    [111] C. Klein, C. S. Hurlbut, Jr., “Manual of Mineralogy 21st ”, 1998.
    [112] S. Brunauer, L. S. Deming, W. S. Deming, and E. Teller, “On a Theory of the van der Waals Adsorption of Gases”, Journal of the American Chemical Society , Vo.62, 1723 ,1940.
    [113] K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemieniewska,“Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity”, Pure and Applied Chemistry, Vo.57, 603-619, 1985.
    [114] 林保忠,“氮氧化銦鎵光觸媒分解水製氫之研究”,國立成功大學化學工程學系碩士論文,36,2009。
    [115] P. Scherrer, “Bestimmung der Grösse und der Inneren Struktur von Kolloidteilchen Mittels Röntgenstrahlen, Nachrichten von der Gesellschaft der Wissenschaften, Göttingen,” Mathematisch -Physikalische Klasse, Vol. 2, 98-100 , 1918.
    [116] S. Kamali, N. Shahmiri, J. S. Garitaonandia, J. Ångström, M. Sahlberg, T. Ericsson, L. Häggström, “ Effect of mixing tool on magnetic properties of hematite nanoparticles prepared by sol–gel method”, Thin Solid Films, Vo. 534, 260–264, 2013.
    [117] A. S. Teja, P. Y. Koh, “ Synthesis, properties, and applications of magnetic iron oxide nanoparticles”, Progress in Crystal Growth and Characterization of Materials, Vo.55, 22-45, 2009.
    [118] 許雅萍,“以旋轉塗佈法製備氧化鐵與摻雜白金氧化鐵光電極應用於太陽能產氫系統之研究”, 國立中央大學材料科學與工程 研究所碩士論文,2009。
    [119] S. Boumaza, A. Boudjemaa, S. Omeiria, R. Bouarab, A. Bouguelia, M. Trari, “ Physical and photoelectrochemical characterizations of hematite α-Fe2O3: Application to photocatalytic oxygen evolution”, Solar Energy, Vo.84, I. 4, 715–721, 2010.
    [120] A.B. Murphy,“Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting”, Solar Energy Materials and Solar Cells, Vo.91, 1326–1337, 2007.
    [121] B. Gilbert, C. Frandsen, E. R. Maxey, D. M. Sherman,“Band-gap measurements of bulk and nanoscale hematite by soft x-ray spectroscopy”, Physical Review B,Vo.79, 035108 -1~7, 2009.
    [122] T. Kawahara, K. Yamada, H. Tada, “Visible light photocatalytic decomposition of 2-naphthol by anodic-biased α-Fe2O3 film”, Journal of Colloid and Interface Science, Vo.294, 504–507, 2006.
    [123] J. Virkutyte, B. Baruwati , R. S. Varma,“Visible light induced photobleaching of methylene blue over melamine-doped TiO2 nanocatalyst”, Nanoscale, Vo.2, 1109–1111 ,2010.
    [124] W. Qu, F. Chen, B. Zhao, J. Zhang,“Preparation and visible light photocatalytic performance of methylene blue intercalated K4Nb6O17”, Journal of Physics and Chemistry of Solids, Vo.71, 35–41, 2010.
    [125] Q. Xiao, J. Zhang, C. Xiao, X. Tan, “Photocatalytic decolorization of methylene blue over Zn1−xCoxO under visible light irradiation”, Materials Science and Engineering B, Vo.142, 121–125 , 2007.
    [126] C. C. Hu, T. C. Hsu, S. Y. Lu, “Effect of nitrogen doping on the microstructure and visible light photocatalysis of titanate nanotubes by a facile cohydrothermal synthesis via urea treatment”, Applied Surface Science, Vo.280, 171–178, 2013.
    [127] D. Li, Y. Zhang, Y.i Zhang, X. Zhou, S. Guo, “ Fabrication of bidirectionally doped β-Bi2O3/TiO2-NTs with enhanced photocatalysis under visible light irradiation”, Journal of Hazardous Materials, Vo. 258–259, 42–49, 2013.
    [128] J. Yang, H. Bai, X. Tan, J. Lian, “ IR and XPS investigation of visible-light photocatalysis—Nitrogen–carbon-doped TiO2 film” ,Applied Surface Science, Vo. 253, I. 4, 1988–1994, 2006.
    [129] A. Cabot, V. F. Puntes, E. Shevchenko, Y. Yin, L. Balcells, M. A. Marcus, S. M. Hughes, A. P. Alivisatos,“Vacancy Coalescence during Oxidation of Iron Nanoparticles”, Journal of the American Chemical Society, 129, 10358-10360, 2007.

    下載圖示 校內:2016-09-12公開
    校外:2018-09-12公開
    QR CODE