簡易檢索 / 詳目顯示

研究生: 林建綱
Lin, Chien-Kang
論文名稱: 車載光達對植生覆蓋之公路邊坡穩定性分析技術研究
Instability analysis of vegetation-covered roadside slope using mobile LIDAR
指導教授: 余騰鐸
Yu, Teng-To
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 67
中文關鍵詞: 光達系統岩石構造穩定性分析植生覆蓋
外文關鍵詞: LiDAR, geo-structure, instability, vegetation covered
相關次數: 點閱:90下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 調查岩石邊坡結構之傳統方法多以人工使用地質羅盤直接量測為主,或應用掃描線法與觀測窗法等系統性方式,配合全測站或GPS進行定位,並以影像輔助製作構造資料圖。但在不穩定之邊坡進行量測皆須在高危險性工作環境下耗費大量的時間和人力資源。本研究使用高效率且高機動性之車載光達系統替代傳統資料蒐集程序,在短時間內可取得更大範圍之資料,大幅降低停留在危險區域的時間,再以半自動化程序,定量分析特定公路邊坡之穩定性。
    本研究主要探討在光達資料上濾除坡面上生長之植物,並儘量保留內部遭覆蓋之岩石位態資料,以提供更完整的地質層面構造資訊供後續分析。資料測試區域為台8線太魯閣路段旁岩坡之二處之車載光達資料,依現況運用多尺度分類法或模擬光照法濾除表面植被後,再透過三維空間平面擬合結構平面,應用Markland測試法進行分析,計算層面或構造交角是否處於危險狀態。
    兩處研究區域依不同摩擦角、坡度和坡向進行計算,大約有30%機率發生楔型破壞。在本研究之中一研究區域,濾除附著植被並保留內部構造之處理方法,相較於全數剔除植被覆蓋的方式增加21%的可用資料面積。未來可結合前後期點雲資料進行比對,若是岩體產生鬆動或有構造發育之跡象產生,則提供警告給相關管理單位,期望能應用於落石預警以及週期性自動化檢查,減少因公路沿線落石而發生傷亡之情形。

    The most traditional method of investigating the geo-structure is to measure the rock slope by inclinometer manually. Furthermore, there are also several systematic ways to conduct similar tasks such as scan-line method or observation window method. However, all of these operations cost intense time and human resources, it shall coped with potential of danger while measuring the data beneath an unstable slope.
    The major purpose of this study is to clean out the vegetation from mobile LiDAR data, which is grow between the crack and enshroud the point cloud from the covered rock, to provide more data of the rock joints from the covered rock for further analysis. Two study sites are the rocky slopes next to highway No.8 in Taroko, eastern Taiwan. The different of surface vegetation are filtered via methods of qPCV method or CANUPO depend on the reality condition. Fitting the three-dimensional geo-structures with a digital plane objects by means of clusters concentration are carried out. Finally, the Markland test method is used to analyze the stability of the angle between geo-structures.
    These two study sites are calculated with various failure angle、slope and azimuth. Around 30% of chance would cause a wedge failure in these areas. In these two study sites, the process that clean out the covered vegetation to retain the data beneath it could gain extra 21% of data than the regular means of erasing all the covered data. In the future data gathered from different time could be compared, if the existence of loosened rock or the enlargement of fracture zone is detected, an early warning to the highway authority could be issued.

    摘要 I 致謝 VII 目錄 IX 表目錄 XI 圖目錄 XII 第一章 緒論 1 1.1研究動機與目的 1 1.2研究流程與架構 2 第二章 文獻回顧 4 2.1地質資料蒐集 4 2.2光達系統介紹 6 2.3國外光達技術應用 9 2.4國內邊坡調查方法 11 2.5演算法介紹 12 2.5.1多尺度分類演算法 12 2.5.2八元樹、相連組件編碼演算法 14 2.5.3模擬光照法演算法 15 2.6平面破壞理論 16 2.6.1赤平投影介紹 16 2.6.2岩坡危害分析 18 第三章 研究方法與程序 22 3.1處理步驟說明 22 3.2研究工具 22 3.2.1車載光達 22 3.2.2 M LiDar Viewer 23 3.2.3 CloudCompare 24 3.2.4 Split-fx 25 3.2.5 Dipanalyst 27 3.3研究資料 28 3.3.1研究區域 28 3.3.2資料處理 29 3.4危險性分析 40 第四章 成果與討論 43 4.1成果展示 43 4.1.1原始點雲資料 43 4.1.2 八元樹演算法、相連組件編碼演算法 43 4.1.3 模擬光照法濾除植物 44 4.1.4多尺度分類成果 45 4.1.5面組擬合成果 46 4.1.6危險度分析成果 47 4.2討論 53 a.危險性評估結果 53 b.車載光達解析力 53 c.掃描稜鏡旋轉波紋 54 d.較高處岩壁資料 55 e.結構面判釋 56 f.掃描距離限制 57 g.本研究應用於空載光達 58 h.三維模型顯示之危險面組 59 i.成果與現地驗證 60 j.模擬光照法與多尺度分類法之成果比較 61 k.植生密度與點雲遮蔽 62 第五章 結論與建議 64 5.1結論 64 5.2建議 65 參考文獻 66

    Abellán, A., Oppikofer, T., Jaboyedoff, M., Rosser, N. J., Lim, M., & Lato, M. J. (2014). Terrestrial laser scanning of rock slope instabilities. EARTH SURFACE PROCESSES AND LANDFORMS, 39(1), 80-97. doi: 10.1002/esp.3493
    Baltsavias, E. P. (1999). Airborne laser scanning: basic relations and formulas. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2–3), 199-214. doi: http://dx.doi.org/10.1016/S0924-2716(99)00015-5
    Crosta, G. (1997). Evaluating rock mass geometry from photographic images. Rock Mechanics and Rock Engineering, 30(1), 35-58. doi: 10.1007/BF01020112
    Cruden, D. M. (1977). Describing the size of discontinuities. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 14(3), 133-137. doi: http://dx.doi.org/10.1016/0148-9062(77)90004-3
    Davis, J. C. (2002). Statistics and Data Analysis in Geology: Wiley; 3 edition.
    Gaich, A., Schubert, W., & Po¨tsch, M. (2004). Reproducible rock mass description in 3D using the JointMetriX3D system. EUROCK 2004 & 53rd Geomechanics Colloquium. Schubert (ed.).
    Goodman, R. E. (1989). Introduction to Rock Mechanics: John Wiley & Sons.
    Goodman, S. (1996). Stereographic projection techniques in structural geology. Journal of African Earth Sciences, 22(4), 625. doi: http://dx.doi.org/10.1016/0899-5362(96)83783-3
    Hadjigeorgiou, J., Lemy, F., Côté, P., & Maldague, X. (2003). An Evaluation of Image Analysis Algorithms for Constructing Discontinuity Trace Maps. Rock Mechanics and Rock Engineering, 36(2), 163-179. doi: 10.1007/s00603-002-0041-1
    Hetherington, D. (2010). Topographic Laser Ranging and Scanning: Principles and Processing, edited by J. Shan and C. K. Toth, Taylor and Francis. International Journal of Remote Sensing, 31(12), 3333-3334. doi: 10.1080/01431160903112612
    Hiremagalur, J., S.Yen, K., Akin, K., Bui, T., A.Lasky, T., & Ravani, B. (2007). Creating standards and specifications for the use of Laser Scanning in CalTrans projects.
    Hoek, E., & Bray, J. D. (1981). Rock Slope Engineering (3rd ed.). The Institute of Mining and Metallurgy, London, England: Taylor & Francis.
    Hoek, E. a. B., J. W. (1981). Rock Slope Engineering, 3rd edn.
    ISRM. (1979). Commission for Standardization of Laboratory and Field Tests. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr.
    Kulatilake, P. H. S. W., Wathugala, D. N., & Stephansson, O. (1993). Joint network modelling with a validation exercise in Stripa mine, Sweden. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 30(5), 503-526. doi: http://dx.doi.org/10.1016/0148-9062(93)92217-E
    Lato, M. J., Diederichs, M. S., Hutchinson, D. J., & Harrap, R. (2012). Evaluating roadside rockmasses for rockfall hazards using LiDAR data: optimizing data collection and processing protocols. Natural hazards, 60(3), 831-864.
    Lemy, F., & Hadjigeorgiou, J. (2003). Discontinuity trace map construction using photographs of rock exposures. International Journal of Rock Mechanics and Mining Sciences, 40(6), 903-917. doi: http://dx.doi.org/10.1016/S1365-1609(03)00069-8
    Miller, M. (2012). Marli Bryant Miller Photography website : www.marlimillerphoto.com.
    Peter, K., Schwarz, P., & El-sheimy, N. (2004). Digital mobile mapping systems-state of the art ang future trends. Advances in Mobile Mapping Technologies.
    Priest, S. D., & Hudson, J. A. (1976). Discontinuity spacings in rock. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 13(5), 135-148. doi: http://dx.doi.org/10.1016/0148-9062(76)90818-4
    Scheidl, C., Rickenmann, D., & Chiari, M. (2008). The use of airborne LiDAR data for the analysis of debris flow events in Switzerland. Nat. Hazards Earth Syst. Sci., 8(5), 1113-1127. doi: 10.5194/nhess-8-1113-2008
    Shaw, P. J. A. (2003). Multivariate statistics for the environmental sciences. Chichester: Wiley.
    Terzaghi, R. D. (1965). Sources of error in joint surveys. Ge´otechnique.
    Tsoutrelis, C., Exadactylos, G., & Kapenis, A. (1990). Study of the rock mass discontinuity system using photoanalysis Rossmanith HP.
    Wehr, A., & Lohr, U. (1999). Airborne laser scanning—an introduction and overview. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2–3), 68-82. doi: http://dx.doi.org/10.1016/S0924-2716(99)00011-8
    徐景祥. (2005). 淺談岩石基礎之承載能力. 臺灣公路工程, 4.
    楊濟豪, 曹., 詹尚書,李亮瑩,王泰典,許宗傑,柯承宏,陳怡頻. (2014). 地面光達應用於露頭不連續面調查與岩體工程特性評估探討. 中華水土保持學報, 1-18.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE