| 研究生: |
黃鈺涵 Huang, Yu-Han |
|---|---|
| 論文名稱: |
應用 Taiwan Data Cube 於多時期衛星影像之崩塌地分析 Landslide Area Analysis with Temporal Satellite Images by Using Taiwan Data Cube |
| 指導教授: |
曾義星
Tseng, Yi-Hsing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 測量及空間資訊學系 Department of Geomatics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | Taiwan Data Cube 、衛星影像時間序列 、常態化差異植生指標 、最大似然分類 |
| 外文關鍵詞: | Satellite Image Time Series, Taiwan Data Cube (TWDC), Normalized Difference Vegetation Index (NDVI), Maximum Likelihood Classification (MLC) |
| 相關次數: | 點閱:186 下載:33 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣受地質和地理環境影響,崩塌災害頻繁發生,目前崩塌分析的相關研究多針對單一事件並採用人工圈選的做法,較易受到主觀想法影響,也需耗費較長的分析時間。然而遙感探測具有即時、大規模、全面和非接觸式快速偵測的特點,對於環境敏感地的監測與分析就至關重要。
因此,本研究基於衛星影像時間序列的概念,透過Taiwan Data Cube平台進行衛星影像的高效率雲端計算應用,建立一個長期且大範圍的環境敏感地監測模型,並對各張影像進行常態化差異植生指標(NDVI)的計算以及最大似然分類法,再由該兩種結果組成一個新的判釋立方體,其中各時期影像中的每個像素都會含有一個NDVI值與一個土地使用的種類,藉此特性,即能以時間和空間兩個面向對該環境敏感地區進行分析探討。在時間面向中,可以針對每一時期各種類的NDVI值進行描述性統計,觀察出該地環境的長期趨勢與變化;在空間面向中,則可以統計各種類和NDVI值高低的像素數量進行比較,找出崩塌地識別之門檻值,並將不同時期之NDVI結果進行影像差分法,找到新生崩塌地的面積變化以及位置。
本研究以高雄市六龜區及南橫公路上的梅山明隧道作為試驗區,蒐集「Formosat 2」和「Landsat 8」資料集中的影像進行分析。六龜區的分析結果顯示,2007到2009年及2014年間該區的新生崩塌面積明顯上升,而在空間分布中可以發現,該區崩塌位置主要分布在荖濃溪及其支流兩側。在梅山明隧道的時間分析中則明顯呈現2008到2009年及2016到2017年期間的新生崩塌面積高於其他時間,尤其2016到2017年的新生崩塌面積更將近20公頃,而該範圍之崩塌空間分布則是從原本的河道兩側轉變到明隧道上方坡地。因此,經由衛星影像時間序列的建立,可以用來解析目標位置時空上的變化,讓地理空間資訊的應用更加全面。
Taiwan is a mountainous island surrounded by sea. Due to geographical and geological factors, typhoons hit Taiwan frequently. It may cause serious disasters, so monitoring the condition of landslide area is critical. Therefore, the purpose of this study is to establish a long-term monitoring model that can be used to find out both temporal and spatial change. To achieve our goal, a satellite image time series (SITS) is built by using Taiwan Data Cube (TWDC), a highly effictive cloud computing platform. The normalized difference vegetation index (NDVI) and maximum likelihood classification (MLC) are then calculated pixel by pixel on these satellite images, respectively. Finally, descriptive statistics and quantity statistics are used in the interpretation cube to analyze the temporal and spatial characteristics of the geologically sensitive area. This study selects “Liouguei District” and “Meishan open-cut tunnel” as the regions of interest. The result demonstrates that NDVI changes in each category over time can be detected for the temporal analysis. The identification standard, area and location of new landslide can also be found for the spatial analysis.
Aburas, M. M., Abdullah, S. H., Ramli, M. F., Ash’aari, Z. H. (2015). Measuring land cover change in Seremban, Malaysia using NDVI index. Procedia Environmental Sciences, 30, 238-243.
Attri, P., Chaudhry, S., Sharma, S. (2015). Remote sensing & GIS based approaches for LULC change detection–a review. International Journal of Current Engineering and Technology, 5(5), 3126-3137.
Borghuis, A., Chang, K., Lee, H. (2007). Comparison between automated and manual mapping of typhoon‐triggered landslides from SPOT‐5 imagery. International Journal of Remote Sensing, 28(8), 1843-1856.
Campbell, J. B., Wynne, R. H. (2011). Introduction to remote sensing: Guilford Press.
Cheng, M.-C., Chiou, C.-R., Chen, B., Liu, C., Lin, H.-C., Shih, I.-L., Chung, C.-H., Lin, H.-Y., Chou, C.-Y. (2019). Open data cube (ODC) in Taiwan: The initiative and protocol development. Paper presented at the IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium.
Dias, H. C., Sandre, L. H., Alarcón, D. A. S., Grohmann, C. H., Quintanilha, J. A. (2021). Landslide recognition using SVM, Random Forest, and Maximum Likelihood classifiers on high-resolution satellite images: A case study of Itaóca, southeastern Brazil. Brazilian Journal of Geology, 51.
Gandhi, G. M., Parthiban, b., Thummalu, N., Christy, A. (2015). Ndvi: Vegetation change detection using remote sensing and gis–A case study of Vellore District. Procedia computer science, 57, 1199-1210.
Giuliani, G., Chatenoux, B., De Bono, A., Rodila, D., Richard, J.-P., Allenbach, K., Dao, H., Peduzzi, P. (2017). Building an earth observations data cube: lessons learned from the swiss data cube (sdc) on generating analysis ready data (ard). Big Earth Data, 1(1-2), 100-117.
Guyet, T., Nicolas, H. (2016). Long term analysis of time series of satellite images. Pattern Recognition Letters, 70, 17-23.
Holcomb, Z. (2016). Fundamentals of descriptive statistics: Routledge.
Huang, S., Tang, L., Hupy, J. P., Wang, Y., Shao, G. (2021). A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. Journal of Forestry Research, 32, 1-6.
Karthik, A., Shivakumar, B. R. (2017). Change Detection using Image Differencing: A Study Over Area Surrounding Kumta, India.
Killough, B. (2018). Overview of the open data cube initiative. Paper presented at the IGARSS 2018-2018 IEEE international geoscience and remote sensing symposium.
Laidler, G. J., Treitz, P. M., Atkinson, D. M. (2008). Remote sensing of arctic vegetation: relations between the NDVI, spatial resolution and vegetation cover on Boothia Peninsula, Nunavut. Arctic, 1-13.
Lillesand, T., Kiefer, R., Chipman, J. (2004). Remote Sensing and Image Interpretation (Fifth Edition) (Vol. 146).
Lin, W.-T., Chou, W.-C., Lin, C.-Y., Huang, P.-H., Tsai, J.-S. (2005). Vegetation recovery monitoring and assessment at landslides caused by earthquake in Central Taiwan. Forest Ecology and Management, 210(1-3), 55-66.
Lira, C., Lousada, M., Falcão, A. P., Gonçalves, A., Heleno, S., Matias, M., de Sousa, A. J., Pereira, M. J., Pina, P., Oliveira, R. (2011). Automatic detection of landslide features with remote sensing techniques: Application to Madeira Island. Paper presented at the 2011 IEEE International Geoscience and Remote Sensing Symposium.
Marshall, G., Jonker, L. (2010). An introduction to descriptive statistics: A review and practical guide. Radiography, 16(4), e1-e7.
Ozyavuz, M., Bilgili, B., Salici, A. (2015). Determination of vegetation changes with NDVI method. Journal of environmental protection and ecology, 16(1), 264-273.
Petley, D. N., Crick, W. D., Hart, A. (2002). The use of satellite imagery in landslide studies in high mountain areas. Paper presented at the Proceedings of the 23rd Asian conference on remote sensing (ACRS 2002), Kathmandu.
Pettorelli, N., Vik, J. O., Mysterud, A., Gaillard, J.-M., Tucker, C. J., Stenseth, N. C. (2005). Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends in ecology & evolution, 20(9), 503-510.
Reis, S. (2008). Analyzing Land Use/Land Cover Changes Using Remote Sensing and GIS in Rize, North-East Turkey. Sensors, 8(10), 6188-6202.
Sahebjalal, E., Dashtekian, K. (2013). Analysis of land use-land covers changes using normalized difference vegetation index (NDVI) differencing and classification methods. African Journal of Agricultural Research, 8(37), 4614-4622.
Schowengerdt, R. A. (2006). Remote sensing: models and methods for image processing: Elsevier.
Sisodia, P. S., Tiwari, V., Kumar, A. (2014). Analysis of supervised maximum likelihood classification for remote sensing image. Paper presented at the International conference on recent advances and innovations in engineering (ICRAIE-2014).
Soomro, A. S., Rajput, A. Q. K., Solangi, S. H. (2012). The study of change after occurrence of earthquake induced landslide disaster in 2005 in Balakot, Pakistan. Mehran University Research Journal of Engineering & Technology, 31(3).
Strobl, P., Baumann, P., Lewis, A., Szantoi, Z., Killough, B., Purss, M., Craglia, M., Nativi, S., Held, A., Dhu, T. (2017). The six faces of the data cube. Paper presented at the Proceedings of the 2017 Conference on Big Data from Space, Toulouse, France.
Sun, J. B., Yang, J. Y., Zhang, C., Yun, W. J., Qu, J. Q. (2013). Automatic remotely sensed image classification in a grid environment based on the maximum likelihood method. Mathematical and Computer Modelling, 58(3-4), 573-581.
Xi, W., Du, S., Wang, Y.-C., Zhang, X. (2019). A spatiotemporal cube model for analyzing satellite image time series: Application to land-cover mapping and change detection. Remote Sensing of Environment, 231, 111212.
Yacouba, D., Guangdao, H., Xingping, W. (2009). Assessment of land use cover changes using NDVI and DEM in Puer and Simao counties, Yunnan Province, China. World rural observations, 1(2), 1-11.
Zhu, X., Helmer, E. H. (2018). An automatic method for screening clouds and cloud shadows in optical satellite image time series in cloudy regions. Remote Sensing of Environment, 214, 135-153.
內政部消防署 (2022). 1110511臺灣地區天然災害損失統計表(47年至110年12月).民國111年6月10日,取自中華民國內政部消防署全球資訊網: https://www.nfa.gov.tw/cht/index.php?code=list&ids=233
尹孝元, 梁隆鑫, 陳錕山, 黃珮琦 (2010). 衛星影像於國土變異監測之應用. Journal of Photogrammetry and Remote Sensing, 15(1), 65-78.
王慶雄, 陳正偉, 賴盈吉, 藍宇良 (2021). 台 20 線南橫公路--梅山明隧道重建三部曲. 臺灣公路工程第47卷第2期, pp. 36-56.
行政院農業委員會水土保持局 (2022). 大規模潛勢區統計圖. 民國111年6月10日,取自土石流防災資訊網: https://246.swcb.gov.tw/Map/LandSlideStatistics.
何岱杰, 張維恕, 林慶偉, 劉守恆 (2014). 應用數值地形及光學影像於潛在大規模崩塌地形特徵判釋. 航測及遙測學刊, 18(2), 109-127.
李品毅 (2021). 莫拉克颱風後高屏溪流域崩塌地多時序變異性分析. 國立成功大學,地球科學系, 碩士, 117.
周晏勤, 蔡尹萱, 陳昭旭, 陳時祖 (2006). 以高解析度衛星影像快速調查崩塌地. 鑛冶:中國鑛冶工程學會會刊,50(4),117-124.
國家災害防救科技中心 (2011). 莫拉克颱風之災情勘查與分析. 民國111年6月12日,取自: https://den.ncdr.nat.gov.tw/media/16266/ .
陳樹群, 吳俊鋐 (2009). 高雄縣小林村獻肚山巨型深層崩塌引致之地形變遷特性. Journal of Chinese Soil and Water Conservation, 40(4), 359-376.
黃雅莉. (2011). 高屏溪流域國有林崩塌地之變遷與植生恢復. 國立屏東科技大學森林系所, 碩士, 96.
經濟部中央地質調查所 (2022). 活動斷層分布圖.民國111年6月12日,取自: https://faultnew.moeacgs.gov.tw/About/Fault_map .
詹勳全, 張嘉琪, 陳樹群, 魏郁軒, 王昭堡, 李桃生 (2015). 台灣山區淺層崩塌地特性調查與分析. Journal of Chinese Soil and Water Conservation, 46(1), 19-28.