簡易檢索 / 詳目顯示

研究生: 翁瑜璟
Weng, Yu-Jing
論文名稱: 黏彈液體頻譜量測技術之研究
Spectroscopic measurements of viscoelastic liquids
指導教授: 王雲哲
Wang, Yun-Che
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 104
中文關鍵詞: 黏彈液體複變黏滯係數倒立振子頻譜儀流固耦合複變剪力模數正切消散模數共振
外文關鍵詞: Viscoelastic fluid, complex viscosity, inverted pendulum, mechanical spectroscopy, fluid structure interaction, complex shear modulus, loss tangent, resonance
相關次數: 點閱:117下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 液體與懸浮液體的黏彈性質在工業應用與科學研究中相當重要。現階段工業產業的流變儀中,線上即時量測寬頻技術仍具挑戰。這些裝置最終可能可以在一次掃描中獲取剪切稀化或剪切增稠的液體資訊。本篇論文中,我們發展鐘擺式黏彈流體頻譜儀(LPVS),以此儀器量測一個頻率範圍內約0.3至100赫茲的液體的黏彈性質,例如儲存剪力模數、消散剪力模數等。LPVS的組成是由一個震盪子浸泡在液體中,藉由電磁交互作用,震盪子會受到一股控制力的作用產生彎曲或扭轉,震盪子的變形量則由雷射位移量測系統紀錄下來。本研究中實驗了幾種液體與懸浮液,例如水、矽油、聚乙烯醇溶液,懸浮液包含氧化鋯科力懸浮液與牛奶。最小量測的液體黏度為1 cP,最小量測之儲存剪力模數與消散剪力模數分別為0.0001與0.01帕。除實驗量測以外,也以有限元素模擬分析流固耦合,將模擬數據與實驗進行定性比較。

    Viscoelastic properties of liquids and suspension fluids are of importance in industrial applications and scientific research. The current status of experimental rheometry, on-line devices to measure liquid’s viscoelastic properties in a wide frequency rage in real time still post several challengings in industry. Such devices ultimately may provide shear-thinning or shear-thickening information of liquids in one frequency scan. In this thesis, we develop the Liquid Pendulum-type Viscoelastic Spectroscopy (LPVS) to measure liquid’s viscoelastic properties, such as storage shear modulus G' and loss shear modulus G', in a moderate frequency range, from about 0.3 to 100 Hz. LPVS is composed of a vibrating core immersed in the surrounding liquid. By using the electromagnetic interaction, the core is deformed under pure bending or torsion by load control, and its deformation is recorded by a laser-based displacement measurement system. Several liquids and suspension fluids are studied in this research, such as water, silicone oil, polyvinyl alcohol, suspension with zirconia particles and milk. The smallest measured viscosity is 1 cP. The smallest measured G' and G' are 0.0001 and 0.01 Pa, respectively. In addition to experimental works, finite element calculations with the consideration of fluid-structure interactions were performed to qualitatively correlate simulation data with experimental data.

    CHINESE ABSTRACT . . . i ABSTRACT . . . ii ACKNOWLEDGMENTS . . . iii LIST OF TABLES . . . vi LIST OF FIGURES . . . vii NOMENCLATURE . . . xiv 1 Introduction . . . 1 1.1 Goals and motivation . . . 1 1.2 Literature review . . . 2 1.3 Outline of this thesis . . . 4 2 Theoretical foundations . . . 5 2.1 Newtonian fluid . . . 5 2.2 Non-Newtonian fluid . . . 6 2.2.1 Polymeric liquid rheology . . . 7 2.2.2 Viscosity of dilute suspensions . . . 10 2.3 The Jeffreys model . . . 13 3 Experimental considerations . . . 15 3.1 General experiment descriptions . . . 15 3.2 Description of LPVS instrument . . . 16 3.2.1 Experiment procedure . . . 16 3.2.2 Generate pure bending or torsion from coils . . . 17 3.2.3 Interaction between laser and position sensor . . . 18 3.2.4 Data reduction methods . . . 19 3.3 Sample descriptions . . . 23 4 Results and discussion . . . 24 4.1 General remarks . . . 24 4.2 Training tests . . . 26 4.2.1 Polyvinyl alcohol . . . 27 4.2.2 Zirconium dioxide . . . 34 4.3 Verification tests . . . 41 4.3.1 Silicone oil . . . 41 4.3.2 Water . . . 51 4.3.3 Milk . . . 55 4.4 Using finite element to calculate loss tangent . . . 63 4.4.1 2D fluid-structure interaction . . . 63 5 Conclusions and Future Work . . . 72 5.1 Conclusions . . . 72 5.2 Future Work . . . 73 APPENDICES Appendix A: List of all experiment in this research . . . 74 Appendix B: A study on PMMA . . . 76 Appendix C: PVS data for Mg-based metallic glass . . . 84 Appendix D: PVS data for glue tests . . . 92 Appendix E: Three-dimensional fluid-structure interaction . . . 98 LIST OF REFERENCES . . . 101 VITA . . . 103 Index . . . 104

    [1] J. Mewis and N. J.Wagner. Colloidal Suspension Rheology. Cambridge University Press,
    2012.
    [2] R. P. Chhabra and J. F. Richardson. Non-Newtonian Flow and Applied Rheology. Elsevier,
    2008.
    [3] R. Brummer. Rheology Essentials of Cosmetics and Food Emulsions. Springer, New
    York, 2006.
    [4] P. Sunthar. Polymer rheology. In A. P. Deshpande, J. M. Krishnan, and P. B. S. Kumar,
    editors, Rheology of Complex Fluids, pages 171–191. Springer, New York, 2010.
    [5] T. B. Lewis and L. E. Nielsen. Viscosity of dispersed and aggregated suspensions of
    spheres. Journal of Rheology, 12(3):421–443, 1968.
    [6] M. Brodt, L. S. Cook, and R. S. Lakes. Apparatus for measuring viscoelastic properties
    over ten decades: refinements. Journal of Materials Science, 66(11):5292–5297, 1995.
    [7] R. S. Lakes. Viscoelastic Materials. Cambridge University Press, Cambridge, UK, 2009.
    [8] J. Woirgard, Y. Sarrazin, and H. Chaumet. Apparatus for the measurement of internal
    friction as a function of frequency between 10-5 and 101 Hz. Review of Scientific Instruments,
    48(10):1322, 1977.
    [9] J. Capodagli and R. Lakes. Isothermal viscoelastic properties of PMMA and LDPE over
    11 decades of frequency and time: a test of time–temperature superposition. Rheologica
    Acta, 47(7):777–786, 2008.
    [10] Y. C.Wang, C. C. Ko, H. K.Wu, and Y. T.Wu. Pendulum-type viscoelastic spectroscopy
    for damping measurement of solids. Japan Society of Mechanical Engineers, 13:s137–
    s142, 2013.
    [11] Y. C.Wang, C. C. Ko, and L. M. Shiau. Accurate determination of torsion and pure bending
    moment for viscoelastic measurements. International Journal of Modern Physics:
    Conference Series, 24:1360016, 2013.
    [12] P. Kao. Studies of pendulum-type viscoelastic spectroscopy for fluids, 7 2016.
    [13] R. B. Bird, R. C. Armstrong, and O. Hassager. Dynamics of Polymeric Liquids, Volume
    1: Fluid Mechanics. Wiley-Interscience, 1987.
    [14] S. Boskovic, J. W. M. Chon, P. Mulvaney, and J. E. Sader. Rheological measurements
    using microcantilevers. Journal of Rheology, 46(4):891–899, 2002.
    [15] C. A. V. Eysden and J. E. Sader. Frequency response of cantilever beams immersed in
    viscous fluids with applications to the atomic force microscope: Arbitrary mode order. J.
    Appl. Phys., 101(4):044908, 2007.
    [16] J. Ma, X. Huang, H. Bae, Y. Zheng, C. Liu, M. Zhao, and M. Yu. Liquid viscosity
    measurement using a vibrating flexure hinged structure and a fiber-optic sensor. IEEE
    Sensors Journal, 16(13):5249–5258, 2016.
    [17] C. A. V. Eysden and J. E. Sader. Compressible viscous flows generated by oscillating
    flexible cylinders. Physics of Fluids, 21(1):013104, 2009.
    [18] M. Heinisch, T. Voglhuber-Brunnmaier, E. K. Reichel, I. Dufour, and B. Jakoby. Reduced
    order models for resonant viscosity and mass density sensors. Sensors and Actuators A:
    Physical, 220:76–84, 2014.
    [19] A. Dua. Statics and dynamics of dilute polymer solutions. In A. P. Deshpande, J. M.
    Krishnan, and P. B. S. Kumar, editors, Rheology of Complex Fluids, pages 151–169.
    Springer, New York, 2010.
    [20] Wikipedia. Polyvinyl alcohol. https://en.wikipedia.org/wiki/Polyvinyl_
    alcohol, 2017. [Online; accessed 3-March-2017].
    [21] Wikipedia. Zirconium dioxide. https://en.wikipedia.org/wiki/Zirconium_
    dioxide, 2017. [Online; accessed 3-March-2017].
    [22] A. Franck. Measuring structure of low viscosity fluids in oscillation using rheometers
    with and without a separate torque transducer. Annual Transactions of the Nordic Rheology
    Society, 11:95–100, 2003.
    [23] COMSOL. website. http://www.comsol.com, 2017.
    [24] Wikipedia. Poly(methylmethacrylate). https://en.wikipedia.org/wiki/
    Poly(methyl_methacrylate), 2004. [Online; accessed 30-April-2017].
    [25] AKSteel. 316/316L stainless steel. http://www.aksteel.com/markets_products/
    stainless.aspx, 2007. [Online; accessed 12-June-2017].
    [26] J. Koppelmann. U¨ ber die bestimmung des dynamischen elastizita¨tsmoduls und des dynamischen
    schubmoduls im frequenzbereich von 10-5 bis 10-1 Hz. Rheologica Acta,
    1(1):20–28, 1958.

    下載圖示 校內:2022-08-30公開
    校外:2022-08-30公開
    QR CODE