| 研究生: |
翁瑜璟 Weng, Yu-Jing |
|---|---|
| 論文名稱: |
黏彈液體頻譜量測技術之研究 Spectroscopic measurements of viscoelastic liquids |
| 指導教授: |
王雲哲
Wang, Yun-Che |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 黏彈液體 、複變黏滯係數 、倒立振子 、頻譜儀 、流固耦合 、複變剪力模數 、正切消散模數 、共振 |
| 外文關鍵詞: | Viscoelastic fluid, complex viscosity, inverted pendulum, mechanical spectroscopy, fluid structure interaction, complex shear modulus, loss tangent, resonance |
| 相關次數: | 點閱:117 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
液體與懸浮液體的黏彈性質在工業應用與科學研究中相當重要。現階段工業產業的流變儀中,線上即時量測寬頻技術仍具挑戰。這些裝置最終可能可以在一次掃描中獲取剪切稀化或剪切增稠的液體資訊。本篇論文中,我們發展鐘擺式黏彈流體頻譜儀(LPVS),以此儀器量測一個頻率範圍內約0.3至100赫茲的液體的黏彈性質,例如儲存剪力模數、消散剪力模數等。LPVS的組成是由一個震盪子浸泡在液體中,藉由電磁交互作用,震盪子會受到一股控制力的作用產生彎曲或扭轉,震盪子的變形量則由雷射位移量測系統紀錄下來。本研究中實驗了幾種液體與懸浮液,例如水、矽油、聚乙烯醇溶液,懸浮液包含氧化鋯科力懸浮液與牛奶。最小量測的液體黏度為1 cP,最小量測之儲存剪力模數與消散剪力模數分別為0.0001與0.01帕。除實驗量測以外,也以有限元素模擬分析流固耦合,將模擬數據與實驗進行定性比較。
Viscoelastic properties of liquids and suspension fluids are of importance in industrial applications and scientific research. The current status of experimental rheometry, on-line devices to measure liquid’s viscoelastic properties in a wide frequency rage in real time still post several challengings in industry. Such devices ultimately may provide shear-thinning or shear-thickening information of liquids in one frequency scan. In this thesis, we develop the Liquid Pendulum-type Viscoelastic Spectroscopy (LPVS) to measure liquid’s viscoelastic properties, such as storage shear modulus G' and loss shear modulus G', in a moderate frequency range, from about 0.3 to 100 Hz. LPVS is composed of a vibrating core immersed in the surrounding liquid. By using the electromagnetic interaction, the core is deformed under pure bending or torsion by load control, and its deformation is recorded by a laser-based displacement measurement system. Several liquids and suspension fluids are studied in this research, such as water, silicone oil, polyvinyl alcohol, suspension with zirconia particles and milk. The smallest measured viscosity is 1 cP. The smallest measured G' and G' are 0.0001 and 0.01 Pa, respectively. In addition to experimental works, finite element calculations with the consideration of fluid-structure interactions were performed to qualitatively correlate simulation data with experimental data.
[1] J. Mewis and N. J.Wagner. Colloidal Suspension Rheology. Cambridge University Press,
2012.
[2] R. P. Chhabra and J. F. Richardson. Non-Newtonian Flow and Applied Rheology. Elsevier,
2008.
[3] R. Brummer. Rheology Essentials of Cosmetics and Food Emulsions. Springer, New
York, 2006.
[4] P. Sunthar. Polymer rheology. In A. P. Deshpande, J. M. Krishnan, and P. B. S. Kumar,
editors, Rheology of Complex Fluids, pages 171–191. Springer, New York, 2010.
[5] T. B. Lewis and L. E. Nielsen. Viscosity of dispersed and aggregated suspensions of
spheres. Journal of Rheology, 12(3):421–443, 1968.
[6] M. Brodt, L. S. Cook, and R. S. Lakes. Apparatus for measuring viscoelastic properties
over ten decades: refinements. Journal of Materials Science, 66(11):5292–5297, 1995.
[7] R. S. Lakes. Viscoelastic Materials. Cambridge University Press, Cambridge, UK, 2009.
[8] J. Woirgard, Y. Sarrazin, and H. Chaumet. Apparatus for the measurement of internal
friction as a function of frequency between 10-5 and 101 Hz. Review of Scientific Instruments,
48(10):1322, 1977.
[9] J. Capodagli and R. Lakes. Isothermal viscoelastic properties of PMMA and LDPE over
11 decades of frequency and time: a test of time–temperature superposition. Rheologica
Acta, 47(7):777–786, 2008.
[10] Y. C.Wang, C. C. Ko, H. K.Wu, and Y. T.Wu. Pendulum-type viscoelastic spectroscopy
for damping measurement of solids. Japan Society of Mechanical Engineers, 13:s137–
s142, 2013.
[11] Y. C.Wang, C. C. Ko, and L. M. Shiau. Accurate determination of torsion and pure bending
moment for viscoelastic measurements. International Journal of Modern Physics:
Conference Series, 24:1360016, 2013.
[12] P. Kao. Studies of pendulum-type viscoelastic spectroscopy for fluids, 7 2016.
[13] R. B. Bird, R. C. Armstrong, and O. Hassager. Dynamics of Polymeric Liquids, Volume
1: Fluid Mechanics. Wiley-Interscience, 1987.
[14] S. Boskovic, J. W. M. Chon, P. Mulvaney, and J. E. Sader. Rheological measurements
using microcantilevers. Journal of Rheology, 46(4):891–899, 2002.
[15] C. A. V. Eysden and J. E. Sader. Frequency response of cantilever beams immersed in
viscous fluids with applications to the atomic force microscope: Arbitrary mode order. J.
Appl. Phys., 101(4):044908, 2007.
[16] J. Ma, X. Huang, H. Bae, Y. Zheng, C. Liu, M. Zhao, and M. Yu. Liquid viscosity
measurement using a vibrating flexure hinged structure and a fiber-optic sensor. IEEE
Sensors Journal, 16(13):5249–5258, 2016.
[17] C. A. V. Eysden and J. E. Sader. Compressible viscous flows generated by oscillating
flexible cylinders. Physics of Fluids, 21(1):013104, 2009.
[18] M. Heinisch, T. Voglhuber-Brunnmaier, E. K. Reichel, I. Dufour, and B. Jakoby. Reduced
order models for resonant viscosity and mass density sensors. Sensors and Actuators A:
Physical, 220:76–84, 2014.
[19] A. Dua. Statics and dynamics of dilute polymer solutions. In A. P. Deshpande, J. M.
Krishnan, and P. B. S. Kumar, editors, Rheology of Complex Fluids, pages 151–169.
Springer, New York, 2010.
[20] Wikipedia. Polyvinyl alcohol. https://en.wikipedia.org/wiki/Polyvinyl_
alcohol, 2017. [Online; accessed 3-March-2017].
[21] Wikipedia. Zirconium dioxide. https://en.wikipedia.org/wiki/Zirconium_
dioxide, 2017. [Online; accessed 3-March-2017].
[22] A. Franck. Measuring structure of low viscosity fluids in oscillation using rheometers
with and without a separate torque transducer. Annual Transactions of the Nordic Rheology
Society, 11:95–100, 2003.
[23] COMSOL. website. http://www.comsol.com, 2017.
[24] Wikipedia. Poly(methylmethacrylate). https://en.wikipedia.org/wiki/
Poly(methyl_methacrylate), 2004. [Online; accessed 30-April-2017].
[25] AKSteel. 316/316L stainless steel. http://www.aksteel.com/markets_products/
stainless.aspx, 2007. [Online; accessed 12-June-2017].
[26] J. Koppelmann. U¨ ber die bestimmung des dynamischen elastizita¨tsmoduls und des dynamischen
schubmoduls im frequenzbereich von 10-5 bis 10-1 Hz. Rheologica Acta,
1(1):20–28, 1958.