簡易檢索 / 詳目顯示

研究生: 蔡佳珊
Tsai, Chia-Shan
論文名稱: 不同風向角下風力負載對太陽能板之結構分析
Structure Analysis of Solar Collection under Wind Loading with Various Wind Incidence
指導教授: 張克勤
Chang, Keh-Chin
共同指導教授: 鍾光民
Chung, Kung-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 81
中文關鍵詞: 太陽能板ANSYS紊流強度風向角暫態分析
外文關鍵詞: SOLAR COLECTOR, ANSYS, TURBULENCE INTENSITY, WIND INCIDENCE, TRANSIENT ANALYSIS
相關次數: 點閱:110下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於人口快速膨脹,能源的需求量大增,但在環境保護與安全的考量下,化石能源與核能發電逐漸受到抵制,因此近代積極的發展再生能源。台灣地處於亞熱帶地區且日照充足,因此太陽能的應用是最具發展潛力的再生能源,近年配合政府對於安裝太陽能熱水器的補助,民眾已開始廣泛使用太陽能熱水器。但台灣地區處於廣大的太平洋區域,平均每年有多達3.4個台風的侵襲,太陽能熱水器易受毀損,因此本研究將利用有限元素軟體ANSYS14.0對太陽能板受風進行結構應力分析。
    結果發現,在固定風向的條件下,不同的紊流強度對於太陽能板的受力影響在改變太陽能板對地面的傾斜角度後影響會逐漸消失,而下板面的受力情形會跟隨著傾斜角度的增加而變強。
    而在改變風向角的分析中發現到,到達中度颱風的風速40m/s時,在15度、22.5度、30度和135度風向角的太陽能板已經因為局部強烈正、負壓造成不鏽鋼外殼的極大應力產生了破壞,相較許育銘(2013)使用剛性支架的結果要更快達到破壞,且破壞的發生非單一風向角獨有的情況,對比起前人們實驗所得到的結果也更加符合,而為了獲得更詳細的結果,另外使用暫態分析的方法,可以發現和平均壓力所得到的結果趨勢相同,但暫態分析的風壓內因為包含了峰值風壓,因此相較於平均壓力的分析受力要大上許多。

    Structure Analysis of Solar Collection under Wind Loading with Various Wind Incidence
    Chia-Shan Tsai
    Keh-Chin Chang, Kung-Ming Chung
    Department of Aeronautics and Astronautics, NCKU

    SUMMARY

    In light of the extensive damage to solar collectors by the invasion of Typhoons, more information is needed about what affects the construction of solar collectors. This study used ANSYS 14.0 to analyze the destruction of solar collectors with support model and used the wind load measured through experiments. The data were used to demonstrate that the turbulence intensity effect disappears as the tilt angle increases. In different wind incidence cases(i.e. at 15 o, 22.5 o, 30 o, and 135 o of wind incidence), the solar collector faileds due to extreme stress to the stainless steel shell.

    Key words: SOLAR COLECTOR, ANSYS, TURBULENCE INTENSITY, WIND INCIDENCE, TRANSIENT ANALYSIS

    INTRODUCTION

    Rapid population growth has led to a significant increase in the demand for energy, however, due to environmental and safety concerns, fossil fuels and nuclear power have faced increasingly resistance as people look for a modern, positive development of renewable energy. As Taiwan is located in a subtropical regions with abundant sunshine, solar energy offers the most promising renewable energy possibility. In recent years, the government has subsidized the installation of solar water heaters, resulting the population beginning to use solar water heaters more widely. However, Taiwan is in the Pacific region, which is affected by an average of 3.4 typhoons annually. This creates problems as solar water heaters are easily damaged by strong wind loads. This study used finite element software ANSYS14.0 for structural analysis in the study.

    METHODS

    The method used in the current study is the finite element method, which five main steps. The first, divide the structure or continuum into finite elements. The second step is to formulate the governing equations of each element. In the static analysis, this means building the relationship between nodal loads and the element’s deformation. In the third step, the loads and supports are applied, setting the boundary conditions. Fourth, the governing equations are solved to determine the nodal displacements. Finally, the calculate element strains and stresses are calculated from the nodal displacements.

    RESULTS AND DISCUSSION

    This study used four models of the tilt angle to explore the effects of turbulence intensity. The deformation of and stress to the stainless steel shell were used to determine that the lower plate of the solar panel was obviously affected by the turbulence intensity. At the 0o wind direction angle, the bottom could not easily form a reflux area. Therefore, when the inclination angle was small, the impact of the turbulence intensity did not disappear. As the tilt angle increased, the effect of turbulence intensity disappeared. On the other side of the solar panel, the upward-facing surface was affected by negative pressure. Therefore, there was no obvious change in the maximum stress beyond the stainless steel casing.
    At different wind incidences, when the wind speed reached 40m/s, in some cases the stainless steel shell went beyond the yield strength to the failure criteria. The maximum principal stress in the glass occurred at the wind angle of 180 o. At this angle, glass faced directly into the wind, which pressed the glass down, causing the glass surface to produce the maximum tensile stress. Some others cases also showed large principle stress, 135 o and 30 o. However, regardless of the wind directions, the stress on the glass did not reach a stage that caused damage, so the destruction to the solar collector occurred primarily due to the damage to the stainless steel shell.

    CONCLUSION

    After analyzing the results, it is found that, as the tilt angle of the solar panel increased, the effect of turbulence intensity was not obvious. Thus, in the analysis of wind incidence cases, the tilt angle is set to 25 o to eliminate the turbulence intensity effect. In addition, when the wind speed reached 40m/s, the solar collector failed due to the extreme stress to the stainless steel shell at wind incidences of 15 o, 22.5 o, 30 o, and 135o. Compared to the results of the rigid support, the present analysis is more consistent with the experimental results.

    摘要 I STRUCTURE ANALYSIS OF SOLAR COLLECTION UNDER WIND LOADING WITH VARIOUS WIND INCIDENCE II 致謝 IV 目錄 V 表目錄 VII 圖目錄 VIII 符號說明 XI 第一章 緒論 1 1-1前言 1 1-2 研究目的 3 1-3文獻回顧 3 1-4研究方法 6 第二章 理論基礎 7 2-1有限元素法理論[17] 7 2-2有限元素分析軟體– ANSYS WORKBENCH 13 2-2.1分析流程 13 2-2.2元素分類 17 2-3 基礎理論與破壞定義 18 2-3.1應力與應變關係 19 2-3.2破壞準則 21 2.4設計風速 23 2-4.1風速之垂直分布 23 第三章 太陽能集熱板模型建立 25 3-1材料基本參數 25 3-2太陽能板模型 25 3-3邊界條件設定 26 3-3.1接觸條件 26 3-3.2負載設定 26 3-3.3非線性設定 28 3-4元素網格及收斂性 29 3-5瞬時分析條件設定 29 3-5.1時間參數設定 29 3-5.2阻尼參數[47] 31 第四章 模擬分析結果與討論 34 4-1紊流強度效應 34 4-2風向角效應 36 第五章結論與未來工作 40 5-1結論 40 5-2未來工作 41 參考資料 42

    [1]三久股份有限公司,"太陽能熱水器的應用"
    http://www.suncue.com/solar/UnderWaterHeater.htm
    [2]太陽熱能南部檢測中心,
    http://solar.rsh.ncku.edu.tw/index.php
    [3]中華民國結構工程學會(2008),"建築物耐風設計規範及解說",第十屆第二次大會附贈資料,p.9-14
    [4]中華民國結構工程學會(2008),"建築物耐風設計規範及解說",第十屆第二次大會附贈資料,p.15-20
    [5] 台灣電力公司,"核能營運現況",http://www.taipower.com.tw/content/new_info/new_info-b23.aspx?LinkID=7
    [6] 台灣電力公司,"我國再生能源發電概況",http://www.taipower.com.tw/content/new_info/new_info-b31.aspx?LinkID=8
    [7]成大能源研究中心(2009),"太陽能熱水器種類",http://solar.rsh.ncku.edu.tw/t01_kind.php
    [8]李清安、張克勤、李聰盛、鍾光民(2005),"颱風對太陽能熱水系統裝置損壞調查剖析:海棠颱風案例",太陽能及新能源學刊,第十卷,第二期,pp. 2-5
    [9]李清安、張克勤、李聰盛、鍾光民(2007.8),"颱風對國內安裝使用太陽能熱水系統之損害探討",工程,第80卷,第四期,pp. 134-142
    [10]李輝煌(2005),ANSYS工程分析基礎與觀念,高立圖書
    [11]周晉成(2009),儲水桶對太陽能板空氣動力效應分析,國立成功大學航空太空工程研究所碩士論文
    [12]財團法人成大研究發展基金會(2011),"太陽能熱水系統補助作業與成效調查研究計畫(4/4)",經濟部能源局
    [13]修治平(2007),導流板對不同角度集熱板之空氣動力特性研究,國立成功大學航空太空工程研究所碩士論文
    [14]陳俊谷(2006),降低太陽能熱水器風損之實驗研究,國立成功大學航空太空工程研究所碩士論文
    [15]陳奕潤(2011),風洞阻塞比及自由流紊流強度對太陽能板風力負載之影響,國立成功大學航空太空工程研究所碩士論文
    [16]陳若華(2012),"低層建築物附屬設施之耐風性能研究",內政部建築研究所協同研究報告
    [17]許育銘(2013),"風力負載下太陽能板之結構分析與改善",國立成功大學航空太空工程研究所碩士論文
    [18]楊桂通(1998),彈性力學,北京,高等教育出版社
    [19]颱風資料庫,
    http://rdc28.cwb.gov.tw/data.php
    [20]ANSYS (2011), "ANSYS 14.0 HELP // Mechanical Application User's Guide // Basics // The Mechanical Application Interface // Toolbars :: 0 // Context Toolbar
    [21]ANSYS(2011), "ANSYS 14.0 HELP // Meshing User's Guide // Specialized Meshing // MultiZone Meshing"
    [22]ANSYS(2011), "ANSYS 14.0 HELP // Meshing User's Guide // Local Mesh Controls // Method Control // Setting the Method Control for Surface Bodies // Uniform Quad Method Control"
    [23]ANSYS(2011), "ANSYS 14.0 HELP // Meshing User's Guide // Local Mesh Controls // Sizing Control"
    [24] ANSYS(2011), "ANSYS 14.0 HELP // Meshing User's Guide // Local Mesh Controls // Mapped Face Meshing Control"
    [25] ANSYS(2011), "ANSYS 14.0 HELP // Meshing User's Guide // Ease of Use Features :: 0 // Showing Mappable Faces"
    [26]ANSYS (2011), "ANSYS 14.0 HELP // Element Reference // I. Element Library // BEAM188
    [27]ANSYS (2011), "ANSYS 14.0 HELP // Element Reference // I. Element Library // SHELL181
    [28]ANSYS (2011), "ANSYS 14.0 HELP // Element Reference // I. Element Library // PLANE183
    [29]ANSYS (2011), "ANSYS 14.0 HELP // Element Reference // I. Element Library // SOLID186
    [30]ANSYS (2011), "ANSYS 14.0 HELP // Element Reference // I. Element Library // SOLID187
    [31]ANSYS(2011), "ANSYS 14.0 HELP // Meshing User's Guide // Global Mesh Controls // Statistics Group // Mesh Metric // Skewness"
    [32]ANSYS(2011), "ANSYS 14.0 HELP // Mechanical Application User's Guide // Features // Connections // Contact // Contact Settings // Definition Settings"
    [33]ANSYS(2011), "ANSYS 14.0 HELP // Mechanical Application User's Guide // Features // Applying Boundary Conditions // Types of Supports // Fixed Supports"
    [34]ANSYS(2011), "ANSYS 14.0 HELP // Mechanical Application User's Guide // Features // Applying Boundary Conditions // Types of Loads // Acceleration"
    [35]ANSYS(2011), "ANSYS 14.0 HELP // Mechanical Application User's Guide // Approach // Analysis Types // Transient Structural and Rigid Dynamics Analyses // Transient Structural Analysis
    [36]ANSYS(2011), "ANSYS 14.0 HELP // Mechanical Application User's Guide // Features // Analysis Settings :: 0 // Steps and Step Controls for Static and Transient Analyses // Guidelines for Integration Step Size
    [37]ANSYS(2011), "ANSYS 14.0 HELP // Mechanical Application User's Guide // Features // Analysis Settings :: 0 // Steps and Step Controls for Static and Transient Analyses // Automatic Time Stepping
    [38]ANSYS(2011), "ANSYS 14.0 HELP // Mechanical Application User's Guide // Features // Analysis Settings ::1
    [39]ANSYS(2011), "ANSYS 14.0 HELP // Mechanical Application User's Guide // Features // Applying Boundary Conditions // Types of Loads // Joint Load
    [40]ANSYS(2011), "ANSYS 14.0 HELP // Mechanical Application User's Guide // Approach // Overall Steps to Using the Mechanical Application // Establish Analysis Settings
    [41]Chin-Cheng Chou(2013), " Wind Loading Analysis on a Solar Collector Panel ", Doctoral Dissertation, Department of Aeronautics and Astronautics, NCKU
    [42]Emil Simiu, Robert H. Scanlan(1996), "Chapter 8 Wind Directionality effects" in Wind Effects on Structures, 3rd ed., Wiley-Interscience, p308-323
    [43]H.-H. Lee (2011), "1-4 Failure Criteria of Materials", in Finite Element Simulations with ANSYS Workbench 14, SDC Publications, p. 37-43
    [44]H.-H. Lee(2011), "Stress Singularity", inFinite Element Simulations with ANSYS Workbench 14, SDC Publications, p.157
    [45]H.-H. Lee (2011), "9.1-6 Mesh with Default Settings", in Finite Element Simulations with ANSYS Workbench 14, SDC Publications, p. 332
    [46]H.-H. Lee (2011), "9-3 More Exercise: Convergence Study of 3D Solid Elements",inFinite Element Simulations with ANSYS Workbench 14, SDC Publications, p. 349-360
    [47]H.-H. Lee(2011), "12.1 Basic of Structural Dynamics" ,in Finite Element Simulations with ANSYS Workbench 14, SDC Publications, p.416-423
    [48]H.-H. Lee(2011), "12.2-5 Perform Transient Structural Simulation" ,in Finite Element Simulations with ANSYS Workbench 14, SDC Publications, p. 464
    [49]H.-H. Lee(2011), "13.1-2 Causes of Structural Nonlinearities" ,in Finite Element Simulations with ANSYS Workbench 14, SDC Publications, p.466
    [50]J.A. Peterka(1983), "Slection of Local Peak Pressure coefficient for Wind Tunnel Studies of Buildings", Journal of Wind Engineering and Industrial Aerodynamics, 3, p. 477-488
    [51]James M. Gere, Barry J. Goodno(2009), Mechanics of materials, 7th ed., Cengage Learning
    [52]K. Chung, K. Chang, Y. Liu, (2008), "Reduction of wind uplift of a solar collector model", Journal of Wind Engineering and Industrial Aerodynamics, Volume 96, Issues 8-9, p. 1294–1306

    無法下載圖示 校內:2016-08-18公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE