簡易檢索 / 詳目顯示

研究生: 陳九蓁
Chen, Jiu-Jeng
論文名稱: 以奈米碳球包覆四氧化三鐵的中空核殼結構在光熱治療之潛在應用
Fabrication of Yolk-Shell Fe3O4 Nanoparticles Encapsulated Carbon Nanoshells for Potential Applications in Photothermal Therapy
指導教授: 葉晨聖
Yeh, Chen-Sheng
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 63
中文關鍵詞: 中空核殼結構磁吸標定光熱治療水解-縮合反應熱裂解
外文關鍵詞: yolk-shell, photothermal therapy, hydrothermal reaction, pyrolysis, magnetic targeting
相關次數: 點閱:72下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇研究中,我們合成四氧化三鐵@中空碳球@二氧化矽(Fe 3 O 4 @Hollow Carbon Nanosphere(HCS)@SiO 2 )的中空核殼結構應用於磁吸標定癌細胞並且以近紅外光 (NIR) 808 nm 光激發後產生熱而殺死人類子宮頸癌細胞(Hela cell)。在此,我們合成中空奈米球材料是利用弱酸-鹼的作用力(-COO-/-NH4+/-COO-)形成乳化層將分散好的四氧化三鐵 (約 20 nm) 水包油包覆住,合成四氧化三鐵@聚合中空球 (Fe 3 O 4 @hollow polymer nanosphere (HPS)),約 138 nm,殼層厚度約 22 nm。因使其擁有較好的分散性及可修飾性,以四乙氧基矽烷 (TEOS) 以水解-縮合反應修飾上二氧化矽,此有修飾二氧化矽(厚度約 6 nm) 的材料進入接下來高溫鍛燒的步驟時,可增加材料的強韌度,不會因為高溫碳化完後 HPS 轉成 HCS,因殼層韌度不夠而破損或聚集。高溫鍛燒650 °C 氬 氣 環 境 下 , 高 溫 下 聚 合 物 進 行 熱 裂 解 (Pyrolysis) 掉 出 許 多 官 能 基 得 到Fe 3 O 4 @HCS@SiO 2 ,大小約 113 nm,厚度約 18 nm。為了增加生物相容性,因此我們
    在表面修飾上 3-氨基丙基三乙氧基矽烷 (APTES)帶有-NH 2 的官能基再以 EDC/NHS 反應 形 成 胺 基 的 方 式 接 上 PEG(NH 2 -PEG-COOH) , 得 到 最 後 的 產 物 。 利 用 此Fe 3 O 4 @HCS@SiO 2 100 ppm (conc. of iron)在紅外光 808 nm (0.8 W /cm2)照射 10 min 溫度可達 60 °C,可知此材料確實有光熱治療效果。MTT 細胞毒性測試結果顯示,材料對細胞並沒有太高的毒性。接著以光熱治療+磁吸的 MTT 得到良好殺死癌細胞的效果。由 AM /PI 染色實驗也可以證實此材料可良好的應用在光熱治療+磁吸的協同治療上。

    We synthesize yolk-shell nanoparticle that attracted us to study, for the advantage of their capacity of loading components for further application. Here we load Fe 3 O 4 for magnetic targeting. The carbon shell is used for photothermal therapy. The Fe 3 O 4 @carbon hollow nanospheres modified by PEG on the surface to improve the biocompatibility. In in vitro test, HeLa cell were treated by particles and evaluated
    survival rate by MTT assay, results showed low toxic to cell. Combined magnetic targeting and photothermal therapy of the particle treatment we can successfully kill the cancer cell.

    摘要...................... I ENGLISH EXTENDED ABSTRACT........................ II 誌謝 ................... X 目錄 ...................XI 圖目錄 ............ XIV 第一章緒論 1-1 奈米碳材簡介 .................. 2 1-1-1 奈米碳材之特性簡介. ..................... .2 1-1-2 奈米碳材的合成方法 ....................... 4 1-1-3 奈米碳材的相關應用 ......................... 9 1-2 氧化鐵-奈米碳材相關材料介紹 .................. 16 1-3 光熱治療介紹 ................ 19 1-3-1 奈米材料的光熱應用 ....................... 22 1-3-2 奈米碳材的光熱應用 ............................ 25 第二章實驗藥品與儀器設備 2-1 實驗藥品 .......................... 28 2-1-1 合成四氧化三鐵@中空碳球@二氧化矽及其相關藥品 ........ 28 2-1-2 細胞實驗所需之化學藥品 ............................ 29 2-2 儀器鑑定 .......................... 30 2-2-1 穿透式電子顯微鏡(Transmission Electron microscopy, TEM) .................................... 30 2-2-2 紫外光-可見光吸收光譜儀(UV-visible Absorption Spectrometer) ............................ 30 2-2-3 X 光粉末繞射儀(X-ray Diffractometer) ............. 30 2-2-4 誘導耦合電漿原子發射光譜(Inductively coupled plasma) ........................................... 30 2-2-5 表面電位測定儀(Zeta potential measurement) ....... 30 2-2-6 氮氣等溫吸附/脫附量測(N 2 adsorption-desorption isotherm) ...................................... 31 2-2-7 Cytoviva 奈米螢光高光譜顯微成像系統............. 31 第三章以奈米碳球包覆四氧化三鐵的中空核殼結構在光熱治療之潛在應用 3-1 研究動機與設計概念 ............................ 33 3-2 實驗步驟 .......................... 34 3-2-1 合成四氧化三鐵(~22nm)奈米粒子 ..................... 34 3-2-2 四氧化三鐵@聚合中空球(X1)....................... 35 3-2-2 四氧化三鐵@聚合中空球官能基修飾 ................ 36 3-2-3 四氧化三鐵@中空碳球聚合物的碳化反應 ........... 37 3-2-4 四氧化三鐵@中空碳球官能基修飾 ................. 37 3-2-5 四氧化三鐵@中空碳球@二氧化矽奈米材料之升溫測試 ........................................... 38 3-2-6 四氧化三鐵@中空碳球@二氧化矽之癌細胞毒性測試(MTT 試驗法) .................... 39 3-2-7 以近紅外光及磁導引驅動四氧化三鐵@中空碳球@二氧化矽照射近紅外光之癌細胞毒殺測試(MTT 試驗法) ..................... 39 3-2-8 以奈米螢光高光譜顯微成像系統(Cytoviva)觀察細胞攝取情況 ................................ 40 3-3 實驗結果與討論 ............................. 41 3-3-1 四氧化三鐵@中空碳球@二氧化矽 物理化學性質分析:TEM、SEM、BET、升溫實驗、XRD........................... 41 3-3-2 四氧化三鐵@中空碳球@二氧化矽(Fe 3 O 4 @HCS@SiO 2 )修飾 APTES、PEG 之鑑定及其光熱特性和穩定性測試 ................ 50 3-3-3 四氧化三鐵@聚合中空球-PEG 細胞實驗(in vitro) ....... 53 第四章結論 參考文獻 .......... 58

    (1) Fuertes, A. B.; Sevilla, M.; Valdes-Solis, T.; Tartaj, P. Synthetic route to nanocomposites made up of inorganic nanoparticles confined within a hollow
    mesoporous carbon shell. Chem. Mater. 2007, 19, 5418-5423.
    (2) Wang, H.; Shen, J.; Li, Y.; Wei, Z.; Cao, G.; Gai, Z.; Hong, K.; Banerjee, P.; Zhou, S. Magnetic iron oxide-fluorescent carbon dots integrated nanoparticles for
    dual-modal imaging, near-infrared light-responsive drug carrier and photothermal therapy. Biomaterials Science 2014, 2, 915-923.
    (3) Wang, H.; Sun, Y.; Yi, J.; Fu, J.; Di, J.; Alonso, A. d. C.; Zhou, S. Fluorescent porous carbon nanocapsules for two-photon imaging, NIR/pH dual-responsive drug carrier, and photothermal therapy. Biomaterials 2015, 53, 117-126.
    (4) Kim, M.; Sohn, K.; Bin Na, H.; Hyeon, T. Synthesis of nanorattles composed of gold nanoparticles encapsulated in mesoporous carbon and polymer shells. Nano Letters 2002, 2, 1383-1387.
    (5) Wang, H.; Cao, G.; Gai, Z.; Hong, K.; Banerjee, P.; Zhou, S. Magnetic/NIR-responsive drug carrier, multicolor cell imaging, and enhanced
    photothermal therapy of gold capped magnetite-fluorescent carbon hybrid nanoparticles. Nanoscale 2015, 7, 7885-7895.
    (6) Huang, C. C.; Chuang, K. Y.; Chou, C. P.; Wu, M. T.; Sheu, H. S.; Shieh, D. B.; Tsai, C. Y.; Su, C. H.; Lei, H. Y.; Yeh, C. S. Size-control synthesis of structure deficient truncated octahedral Fe 3-δ O 4 nanoparticles: high magnetization magnetites as effective hepatic contrast agents. J. Mater. Chem. 2011, 21, 7472-7479.
    (7) Wang, G.-H.; Sun, Q.; Zhang, R.; Li, W.-C.; Zhang, X.-Q.; Lu, A.-H. Weak acid-base interaction induced assembly for the synthesis of diverse hollow nanospheres. Chem. Mater. 2011, 23, 4537-4542.
    (8) Zhi, M.; Xiang, C.; Li, J.; Li, M.; Wu, N. Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review. Nanoscale 2013, 5, 72-88.
    (9) Chen, Y.; Xu, P.; Shu, Z.; Wu, M.; Wang, L.; Zhang, S.; Zheng, Y.; Chen, H.; Wang, J.; Li, Y.; Shi, J. Multifunctional graphene oxide-based triple stimuli-responsive nanotheranostics. Adv. Func. Mater. 2014, 24, 4386-4396.
    (10) Liu, Z.; Fan, A. C.; Rakhra, K.; Sherlock, S.; Goodwin, A.; Chen, X.; Yang, Q.; Felsher, D. W.; Dai, H. Supramolecular stacking of doxorubicin on carbon
    nanotubes for in vivo cancer therapy. Angew. Chem. Inter. Edit. 2009, 48, 7668-7672.
    (11) Liu, Z.; Robinson, J. T.; Sun, X.; Dai, H. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc. 2008, 130, 58
    10876-10877.
    (12) Zhang, L.; Xia, J.; Zhao, Q.; Liu, L.; Zhang, Z. Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs.
    Small 2010, 6, 537-544.
    (13) Baker, S. N.; Baker, G. A. Luminescent carbon nanodots: Emergent nanolights. Angew. Chem. Inter. Ed. 2010, 49, 6726-6744.
    (14) Kong, L.; Lu, X.; Bian, X.; Zhang, W.; Wang, C. Constructing carbon-coated Fe 3 O 4 microspheres as antiacid and magnetic support for palladium nanoparticles for catalytic applications. Acs Appl. Mater. Interfaces 2011, 3, 35–42.
    (15) Yang, W.; Ratinac, K. R.; Ringer, S. P.; Thordarson, P.; Gooding, J. J.; Braet, F. Carbon nanomaterials in biosensors: Should you use nanotubes or graphene? Angew.
    Chem. Int. Ed. 2010, 49, 2114 – 2138.
    (16) He, Q.; Ma, M.; Wei, C.; Shi, J. Mesoporous carbon@silicon-silica nanotheranostics for synchronous delivery of insoluble drugs and luminescence
    imaging. Biomaterials 2012, 33, 4392-4402.
    (17) Wang, Y.; Wang, K.; Zhang, R.; Liu, X.; Yan, X.; Wang, J.; Wagner, E.; Huang, R. Synthesis of core-shell graphitic carbon@silica nanospheres with dual-ordered
    mesopores for cancer-targeted photothermochemotherapy. Acs Nano 2014, 8, 7870-7879.
    (18) Zhang, S.; Qian, X.; Zhang, L.; Peng, W.; Chen, Y. Composition-property relationships in multifunctional hollow mesoporous carbon nanosystems for pH-responsive magnetic resonance imaging and on-demand drug release. Nanoscale 2015, 7, 7632-7643.
    (19) Liang, C. D.; Li, Z. J.; Dai, S. Mesoporous carbon materials: Synthesis and modification. Angew. Chem. Int. Ed. 2008, 47, 3696-3717.
    (20) Enzel, P.; Bein, T. Poly(acrylonitrile) chains in zeolite channels - polymerization and pyrolysis. Chem. Mater. 1992, 4, 819-824.
    (21) Kyotani, T.; Tsai, L. F.; Tomita, A.Preparation of ultrafine carbon tubes in nanochannels of an anodic aluminum oxide film. Chem. Mater. 1996, 8, 2109-2113.
    (22) Zakhidov, A. A.; Baughman, R. H.; Iqbal, Z.; Cui, C. X.; Khayrullin, I.; Dantas, S. O.; Marti, I.; Ralchenko, V. G. Carbon structures with three-dimensional periodicity at optical wavelengths. Science 1998, 282, 897-901.
    (23) Yoon, S. B.; Sohn, K.; Kim, J. Y.; Shin, C. H.; Yu, J. S.; Hyeon, T. Fabrication of carbon capsules with hollow macroporous core/mesoporous shell structures. Adv.
    Mater. 2002, 14, 19-21.
    (24) Carter, J. S.; Kramer, S.; Talley, J. J.; Penning, T.; Collins, P.; Graneto, M. J.; Seibert, K.; Koboldt, C. M.; Masferrer, J.; Zweifel, B. Synthesis and activity of sulfonamide-substituted 4,5-diaryl thiazoles as selective cyclooxygenase-2
    inhibitors. Bioorg. Med. Chem. Lett. 1999, 9, 1171-1174.
    (25) Kosonen, H.; Valkama, S.; Nykänen, A.; Toivanen, M.; Brinke, G. t.; Ruokolainen, J.; Ikkala, O. Functional porous structures based on the pyrolysis of
    cured templates of block copolymer and phenolic resin. Adv. Mater. 2006, 18, 201-205.
    (26) Meng, Y.; Gu, D.; Zhang, F.; Shi, Y.; Cheng, L.; Feng, D.; Wu, Z.; Chen, Z.; Wan, Y.; Stein, A.; Zhao, D. A family of highly ordered mesoporous polymer resin
    and carbon structures from organic-organic self-assembly. Chem. Mater. 2006, 18, 4447-4464.
    (27) Meng, Y.; Gu, D.; Zhang, F. Q.; Shi, Y. F.; Yang, H. F.; Li, Z.; Yu, C. Z.; Tu, B.; Zhao, D. Y. Ordered mesoporous polymers and homologous carbon frameworks:
    Amphiphilic surfactant templating and direct transformation. Angew. Chem. Inter. Edit. 2005, 44, 7053-7059.
    (28) Tanaka, S.; Nishiyama, N.; Egashira, Y.; Ueyama, K. Synthesis of ordered mesoporous carbons with channel structure from an organic-organic nanocomposite. Chem. Comm. 2005, 2125-2127.
    (29) Valkama, S.; Nykanen, A.; Kosonen, H.; Ramani, R.; Tuomisto, F.; Engelhardt, P.; ten Brinke, G.; Ikkala, O.; Ruokolainen, J. Hierarchical porosity in
    self-assemhled polymers: Post-modification of block copolymer-phenolic resin complexes hy pyrolysis allows the control of micro- and mesoporosity. Adv. Func. Mater. 2007, 17, 183-190.
    (30) Zhang, F.; Meng, Y.; Gu, D.; Yan, Y.; Chen, Z.; Tu, B.; Zhao, D. An aqueous cooperative assembly route to synthesize ordered mesoporous carbons with controlled structures and morphology. Chem. Mater. 2006, 18, 5279-5288.
    (31) Liang, C. D.; Hong, K. L.; Guiochon, G. A.; Mays, J. W.; Dai, S. Synthesis of a large-scale highly ordered porous carbon film by self-assembly of block copolymers.
    Angew. Chem. Inter. Edi. 2004, 43, 5785-5789.
    (32)Brodie, B. C. On the atomic weight of graphite. Phil. Trans. R. Soc. Lond. 1859, 149, 249-259.
    (33) Liu, H.; Lv, T.; Zhu, Z. Template-assisted synthesis of hollow TiO 2 @rGO core-shell structural nanospheres with enhanced photocatalytic activity. J. Mol. Cata. A-Chem. 2015, 404, 178-185.
    (34) Kim, Y. K.; Na, H. K.; Kim, S.; Jang, H.; Chang, S. J.; Min, D. H. One-Pot Synthesis of multifunctional Au@Graphene oxide nanocolloid Core@Shell nanoparticles for raman bioimaging, photothermal, and photodynamic therapy. Small 2015, 11, 2527-2535.
    (35) Cao, L.; Wang, X.; Meziani, M. J.; Lu, F. S.; Wang, H. F.; Luo, P. J. G.; Lin, Y.; Harruff, B. A.; Veca, L. M.; Murray, D.; Xie, S. Y.; Sun, Y. P. Carbon dots for multiphoton bioimaging. J. Am. Chem. Soc. 2007, 129, 11318-11319.
    (36) Hu, L.; Sun, Y.; Li, S.; Wang, X.; Hu, K.; Wang, L.; Liang, X.; Wu, Y. Multifunctional carbon dots with high quantum yield for imaging and gene delivery. Carbon 2014, 67, 508-513.
    (37) Cao, L.; Sahu, S.; Anilkumar, P.; Bunker, C. E.; Xu, J.; Fernando, K. A. S.; Wang, P.; Guliants, E. A.; Tackett, K. N.; Sun, Y.-P. Carbon nanoparticles as
    visible-light photocatalysts for efficient CO2 conversion and beyond. J. Am. Chem. Soc. 2011, 133, 4754-4757.
    (38) Wang, L.; Sun, Q.; Wang, X.; Wen, T.; Yin, J. J.; Wang, P.; Bai, R.; Zhang, X. Q.; Zhang, L. H.; Lu, A. H.; Chen, C. Using hollow carbon nanospheres as a
    light-induced free radical generator to overcome chemotherapy resistance. J. Am. Chem. Soc. 2015, 137, 1947-1955.
    (39) Xiaohua Huanga; El-Sayed, M. A. Plasmonic photo-thermal therapy (PPTT). Alexandria J. Med. 2011, 47, 1-9.
    (40) Smith, A. M.; Mancini, M. C.; Nie, S. Second window for in vivo imaging. Nature Nanotechnology. 2009, 710-711.
    (41) Brunetaud, J. M.; Mordon, S.; Maunoury, V.; Beacco, C. Non-PDT uses of lasers in oncology. Lasers in Medical Sci. 1995, 10, 3-8.
    (42) Link, S.; Ei-Sayed, M. A. Optical properties and ultrafast dynamics of metallic nanocrystals. Annu. Rev. Phys. Chem. 2003, 54, 331-366.
    (43) Pustovalov, V. K.; Smetannikov, A. S.; Zharov, V. P. Photothermal and accompanied phenomena of selective nanophotothermolysis with gold nanoparticles
    and laser pulses. Laser Phys. Lett. 2008, 5, 775-792.
    (44) Martin, S. J.; Henry, C. M.; Cullen, S. P. A Perspective on mammalian caspases as positive and negative regulators of inflammation. Molecular Cell 2012, 46, 387-397.
    (45) Melamed, J. R.; Edelstein, R. S.; Day, E. S. Elucidating the fundamental mechanisms of cell death triggered by thotothermal therapy. Acs Nano 2015, 9, 6-11.
    (46) Cai, X.; Jia, X.; Gao, W.; Zhang, K.; Ma, M.; Wang, S.; Zheng, Y.; Shi, J.; Chen, H. A versatile nanotheranostic agent for efficient dual-mode imaging guided synergistic chemo-thermal tumor therapy. Adv. Func. Mater. 2015, 25, 2520-2529.
    (47) Chen, Q.; Wang, C.; Zhan, Z. X.; He, W. W.; Cheng, Z. P.; Li, Y. Y.; Liu, Z. Near-infrared dye bound albumin with separated imaging and therapy wavelength channels for imaging-guided photothermal therapy. Biomaterials 2014, 35, 8206-8214.
    (48) Hu, K. W.; Jhang, F. Y.; Su, C. H.; Yeh, C. S. Fabrication of Gd 2 O(CO 3 ) 2 center dot H 2 O/silica/gold hybrid particles as a bifunctional agent for MR imaging and photothermal destruction of cancer cells. J. Mater. Chem. 2009, 19, 2147-2153.
    (49) Su, S.; Ding, Y.; Li, Y.; Wu, Y.; Nie, G. Integration of photothermal therapy and synergistic chemotherapy by a porphyrin self-assembled micelle confers chemosensitivity in triple-negative breast cancer. Biomaterials 2016, 80, 169-178.
    (50)Wang, Y.; Yang, T.; Ke, H.; Zhu, A.; Wang, Y.; Wang, J.; Shen, J.; Liu, G.; Chen, C.; Zhao, Y.; Chen, H. Smart albumin-biomineralized nanocomposites for
    multimodal imaging and photothermal tumor ablation. Adv. Mater. 2015, 27, 3874-3882.
    (51) Yi, X.; Yang, K.; Liang, C.; Zhong, X.; Ning, P.; Song, G.; Wang, D.; Ge, C.; Chen, C.; Chai, Z.; Liu, Z. Imaging-guided combined photothermal and radiotherapy to treat subcutaneous and metastatic tumors using iodine-131-doped copper sulfide nanoparticles. Adv. Func. Mater. 2015, 25, 4689-4699.
    (52) Zhou, M.; Zhao, J.; Tian, M.; Song, S.; Zhang, R.; Gupta, S.; Tan, D.; Shen, H.; Ferrari, M.; Li, C. Radio-photothermal therapy mediated by a single compartment
    nanoplatform depletes tumor initiating cells and reduces lung metastasis in the orthotopic 4T1 breast tumor model. Nanoscale 2015, 7, 19438-19447.
    (53) Wu, Z. C.; Li, W. P.; Luo, C. H.; Su, C. H.; Yeh, C. S. Rattle-type Fe 3 O 4 @CuS developed to conduct magnetically guided photoinduced hyperthermia at first and
    second NIR biological windows. Adv. Func. Mater. 2015, 25, 6527-6537.
    (54) Cheng, F. Y.; Su, C. H.; Wu, P. C.; Yeh, C. S. Multifunctional polymeric nanoparticles for combined chemotherapeutic and near-infrared photothermal
    cancer therapy in vitro and in vivo. Chem. Comm. 2010, 46, 3167-3169.
    (55) Kuo, W. S.; Chang, C. N.; Chang, Y. T.; Yang, M. H.; Chien, Y. H.; Chen, S. J.; Yeh, C. S. Gold nanorods in photodynamic therapy, as hyperthermia agents, and in
    near-infrared optical imaging. Angew. Chem. Int. Ed. 2010, 49, 2711-2715.
    (56) Tsai, M. F.; Chang, S. H. G.; Cheng, F. Y.;Shanmugam, V.; Cheng, Y. S.; Su, C. H.; Yeh, C. S. Au nanorod design as light-absorber in the first and second biological
    near-infrared windows for in vivo photothermal therapy. Acs Nano 2013, 7, 5330-5342.
    (57) Pitsillides, C. M.; Joe, E. K.; Wei, X. B.; Anderson, R. R.; Lin, C. P. Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophysical
    Journal 2003, 84, 4023-4032.
    (58) Zhang, Z. J.; Wang, J.; Nie, X.; Wen, T.; Ji, Y.; Wu, X.; Zhao, Y.; Chen, C. Near Infrared Laser-Induced Targeted Cancer Therapy Using Thermoresponsive Polymer
    Encapsulated Gold Nanorods. J. Am. Chem. Soc. 2014, 136, 7317-7326.
    (59) Chen, Y. W.; Su, Y. L.; Hu, S. H.; Chen, S. Y. Functionalized graphene nanocomposites for enhancing photothermal therapy in tumor treatment. Adv. Drug Deli. Rev. 2016, 1-15.
    (60) Chen, Y. C.; Huang, X. C.; Luo, Y. L.; Chang, Y. C.; Hsieh, Y. Z.; Hsu, H. Y. Non-metallic nanomaterials in cancer theranostics: a review of silica- and
    carbon-based drug delivery systems. Sci. Tec. Adv. Mater. 2013, 14.
    (61) Kim, S.; Ryoo, S. R.; Na, H. K.; Kim, Y. K.; Choi, B. S.; Lee, Y.; Kim, D. E.; Min, D.H. Deoxyribozyme-loaded nano-graphene oxide for simultaneous sensing and silencing of the hepatitis C virus gene in liver cells. Chem. Comm. 2013, 49, 8241-8243.
    (62) Robinson, J. T.; Tabakman, S. M.; Liang, Y.; Wang, H.; Casalongue, H. S.; Daniel, V.; Dai, H. Ultrasmall Reduced Graphene Oxide with High Near-Infrared
    Absorbance for Photothermal Therapy. J. Am. Chem. Soc. 2011, 133, 6825-6831.
    (63)Yang, X.; Wang, Y.; Huang, X.; Ma, Y.; Huang, Y.; Yang, R.; Duan, H.; Chen, Y. Multi-functionalized graphene oxide based anticancer drug-carrier with
    dual-targeting function and pH-sensitivity. J. Mater. Chem. 2011, 21, 3448-3454.
    (64) Wang, Y.; Wang, K.; Zhao, J.; Liu, X.; Bu, J.; Yan, X.; Huang, R. Multifunctional Mesoporous Silica-Coated Graphene Nanosheet Used for Chemo-Photothermal Synergistic Targeted Therapy of Glioma. J. Am. Chem. Soc. 2013, 135, 4799-4804.
    (65) Lyer, S.; Singh, R.; Tietze, R.; Alexiou, C. Magnetic nanoparticles for magnetic drug targeting. Biomed. Eng. Biomed. Tech. 2015, 60, 465-475.
    (66) Peng, X. H.; Qian, X. M.; Mao, H.; Wang, A. Y.; Chen, Z.; Nie, S. M.; Shin, D. M. Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy. Inter. J. Nanomedi. 2008, 3, 311-321.
    (67) Rahman, I. A.; Jafarzadeh, M.; Sipaut, C. S.Synthesis of organo-functionalized nanosilica via a co-condensation modification using gamma-aminopropyltriethoxysilane (APTES). Ceram. Inter. 2009, 35, 1883-1888.
    (68) Zhang, Z. J.; Narumi, K.; Naramoto, H. Structural change of a hydrogenated carbon film upon heating. J. Phys.:Condens. Matter 2001, 13, L475-L481.
    (69) Ferrari, A. C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Comm. 2007, 143, 47-57.

    下載圖示 校內:2018-07-17公開
    校外:2019-07-17公開
    QR CODE