簡易檢索 / 詳目顯示

研究生: 林世銘
Lin, Shih-Ming
論文名稱: 應用循次算則於逆向熱傳問題之研究
Study on the Inverse Heat Conduction Problem by Sequential Algorithms
指導教授: 楊玉姿
Yang, Yue-Tzu
陳朝光
Chen, Chao-Kuang
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 173
中文關鍵詞: 逆向熱傳導問題循次算則逆向矩陣前置誤差修正型循次算則
外文關鍵詞: MSFSM, inverse heat conduction problem (IHCP), leading error, reverse matrix, sequential function specification method(SFSM)
相關次數: 點閱:163下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要為使用循次方法解析逆向熱傳導問題(或稱熱傳導逆問題),在解析過程使用有限差分法將描述問題之微分方程式與已知條件離散化,進而推導循次運算式,隨後合併導入未來時間原理與線性最小平方誤差法以處理計算結果之穩定度與準確度問題。
    本文方法在理想量測行為之無誤差情況,不需使用未來時間數據即可獲得與實際情形一致之測定結果;在考慮量測誤差之情況,則可藉由加入未來時間數據而獲得穩定良好之估算結果。在本文中亦發現在加入未來時間之運算過程中,亦會同時產生一種特定誤差-前置誤差(leading error)。此種特定誤差之效應在使用少量未來時間之情況下並不明顯,然隨著所使用未來時間數之增加,其效應亦逐漸擴大,致影響計算分析之準確度。有鑑於此,在本文中,亦針對此點做詳細探討,並提出一有效之修正方法-修正型循次算則。
    在本文中所探討之問題型式包括一維桿件暫態熱傳導、具多項熱源同時作用之二維平板暫態熱傳導、建築物表面對流熱傳係數估算、三維輥輪在輥壓製程熱行為預測等問題,本文以循次算則在不同之限制條件下分別敘述與探討其解析模式,由估算結果顯示本文方法可有效應用於各種逆向熱傳問題之解析運算,甚至在具有顯著量測誤差之特定情況(例如3%、5% 或以上),使用修正型循次算則亦可提供較之其它方法更為穩定與準確之估算結果,並且同時擁有極佳之運算效率。
    本文方法應用於解析逆向熱傳問題之優點不僅擁有極佳之計算效率,在計算過程不需疊代,亦不需預先設定待測函數型式,在考慮量測誤差時仍可獲得準確之估算,甚至在量測誤差顯著之情況,修正型循次算則亦可提供具有良好可靠度之估算結果。

    An efficient sequential approach is proposed to determine the unknown conditions of the inverse heat conduction problem (IHCP). As a beginning, a sequential algorithm is derived based on the analysis of mathematical formulation, then combined with the concept of future time and linear least-squares error method in order to stabilize the computational results when the measurement noises are considered.
    In the procedure of computation, adding the future time information is essential to obtain a stable estimation due to the ill-posed characteristic of inverse problem when the measurement error is considered. Furthermore, the stability of solution of the IHCP is improved progressively by increasing the number of future times. But such an operation would cause a systematic “leading error” that caused due to the use of future temperatures to compute the present parameter. The leading error is different from the error caused by measurement error. In contrast, the leading error also rises depending closely on the increase of number of future times. Nevertheless, when the measurement error is considered, more future times is often essential to obtain a stable estimation. Base on the reason, such an incompatible problem also discuss in this thesis, and then proposed a modified sequential function specification method (MSFSM) to provide the stable and accurate computational result.
    In this thesis, there are several distinct kinds of problems including the determination of heat sources in one- and two-dimensional transient heat conduction problems, the determination of convection heat transfer coefficient in the surface of building, and the estimation of surface thermal behavior of the working roll in a rolling process, etc., in order to verify that the proposed method in this study can be applied to provide a good solution for the IHCP. Even when the larger measurement error is considered in some special cases, the proposed method can also yield a good estimation.

    目 錄 中文摘要 Ⅰ 英文摘要 Ⅲ 誌謝 Ⅴ 目錄 Ⅵ 圖目錄 Ⅷ 表目錄 ⅩⅤ 符號說明 ⅩⅤⅠ 第一章 緒論 1 1-1研究目的與背景 1 1-2文獻回顧 2 1-3研究重點與內容架構 5 第二章 數值方法 8 2-1簡介 8 2-2逆解法 10 2.3誤差敏感度分析 13 第三章 一維暫態熱傳導逆問題分析 15 3-1 物理模式 15 3-2 數學方法與運算 16 3-3 結果與討論 20 第四章 二維平板多熱源暫態熱傳導逆問題分析 33 4-1 物理模式 34 4-2 數學方法與運算 36 4-3 結果與討論 43 第五章 建築物外牆對流熱傳係數之估算 64 5-1 物理模式 64 5-2 數學方法與運算 65 5-3 結果與討論 71 第六章 輥輪於輥壓製程之熱傳導逆問題分析 84 6-1 物理模式 85 6-2 數學方法與運算 87 6-3 結果與討論 88 第七章 修正型循次算則之解析與應用 104 7-1 物理模式 105 7-2 數學方法與運算 107 7-3 MSFSM修正方法 109 7-4 結果與討論 113 第八章 應用修正型循次算則於具有多項熱源之熱傳導逆問題解析 133 8-1 物理模式 133 8-2 數學方法與運算 134 8-3 MSFSM修正方法 136 8-4 結果與討論 137 第九章 結論與建議 158 9-1 結論 158 9-2 未來研究方向之建議 160 參考文獻 161

    參 考 文 獻
    1. Shumakov N. V., “A Method for the Experimental Study of the Process of Heating a Solid Body,” Soviet Physics-Technical Physics (Translated by Institute of Physics), Vol. 2, pp. 771, 1957.
    2. Stolz G. Tr., “Numerical Solution to an Inverse Problem of Heat Condition for Simple Shapes,” ASME J. Heat Transfer, Vol. 82, pp. 20-26, Feb. 1960.
    3. Beck J. V., “Calculation of Surface Heat Flux From an Integral Temperature History,” ASME J. Heat Transfer, 62-HT-46, 1962.
    4. Sparrow E. M., Haji-Sheikh A. and Lundgren T. S., “The Inverse Problem in Transient Heat Conduction,” J. Appl. Mech. Vol. 86e, pp. 369-375, 1964.
    5. Beck J. V., “Surface Heat Determination Using an Integral Method,” Nucl. Eng. Des., Vol. 7, pp. 170-178, 1968.
    6. Beck J. V., “Nonlinear Estimation Applied the Nonlinear Inverse Heat Conduction Problem,” International Journal of Heat and Mass Transfer, Vol. 13, pp. 703-716, 1970.
    7. Alifanov O. M. “Solution of an Inverse Problem of Heat Conduction by Iteration Methods,” J. of Eng. Phys., Vol. 26, No. 4, pp. 471-476, 1974.
    8. Beck J. V., Litkouhi B. and St. Clair C. R., “Efficient Sequential Solution of Nonlinear Inverse Heat Conduction Problem,” Numerical Heat Transfer, Vol. 5, pp. 275-286, 1982.
    9. Alifanov O. M. and Mikhailov V. V., “Solution of the Nonlinear Inverse Thermal Conductivity Problem by the Iteration Method,” Journal of Engineering Physics, Vol. 35, 1501-1506, 1978.
    10. Huang C. H., Ozisik M., and Sawaf B., “Conjugate Gradient Method for Determining Unknown Contact Conductance during Metal Casting”, Int. J. Heat Mass Transfer, Vol.35, No.7, pp. 779-786, 1992.
    11. Orlande H. R. and Ozisik M. N., ”Inverse Problem of Estimating Interface Conductance between Periodically Casting Surface”, J. of Thermophysics and Heat Transfer, Vol.17, No. 2, pp.319-325, 1993.
    12. Kerov N. V., “Solution of the Two Dimension Inverse Heat Conduction Problem in a Cylindrical Coordinate System”, J. of Engineering Physics, Vol.45, pp. 752-756,1983.
    13. Alifanov, O. M., and Artyukhin F. A., “Regularized Numerical Solution of Nonlinear Inverse Heat-Conduction Problem,” J. of Engineering Physics, 29, pp. 934-938,1975.
    14. Alifanov, O. M., “Identification of Processes of Heat Container Apparatus. An Introduction to the Theory of Inverse Problem of Heat Transfer,” Machinery Publisher, Moscow, 1979.
    15. Alifanov, O. M., “Inverse Boundary Value Problem of Heat Conduction,” J. of Engineering Physics, 25,1975.
    16. Tikhonov, A. N. and Arsenin, V.Y., ”Solutions of III-Posed Problems, V.H. Winston & Sons, Washington, D.C., 1977.
    17. Hoerl A. E. and Kennard R. W., “Ridge Regression: Biased Estimation for Nonorthogonal Problems,” Technomertrics 12, pp. 55-67,1970.
    18. Marquardt D. W., “Generalized Inverses, Ridge Regression, Biased Linear Estimated, and Nonlinear Estimation,” Technometrics 12, pp. 591-612, 1970.
    19. Hills R. G., Mulholland G. P. and Matthews L. K., “The Application of the Backus-Gilbert Method to the Inverse Heat Conduction Problem in Composite Media,” ASME paper No. 82-HT-26, 1982.
    20. Frank I., “An Application of Least Squares Method to the Solution of Inverse Problem of Heat Conduction,” J. Heat Transfer, 85C, pp. 378-379, 1963.
    21. Mulholland G. P., Gupta B. P. and San Martin R. L., “Inverse Problem of Heat Conduction in Composite Meadia,” ASME Paper No. 75-WA/HT-83, 1975.
    22. Arledge R. G. and Haji-Sheikh A., “An Iterative Approach to the Solution of Inverse Conduction Problem,” Numerical Heat Transfer, Vol. 1, pp. 365-376, 1978.
    23. Dorai G. A. and Tortorell D. A., “Transient Inverse Heat Conduction Problem Solutions via Newton’s Method,” Int. J. Heat Mass Transfer, Vol 40, No. 17, pp. 4115-4127, 1997.
    24. Deverall L. I. And Channapragada R. S., “An New Integral Equation for Heat Flux in Inverse Heat Conduction,” J. Heat Transfer, 88C, pp. 327-328, 1966.
    25. Burggraf O. R., “An Exact Solution of the Inverse Problem in Heat Conduction Theory and Applications,” ASME J. Heat Transfer, Vol. 84, pp. 373-382, 1964.
    26. Trujillo D. M. “Application of Dynamic Programming to the General Inverse Problem,” Int. J. Numerical Methods Eng., Vol. 12, pp. 613-624, 1978.
    27. Flach G. P. and Ozisik M. N., “Inverse Heat Conduction Problem of Simultaneously Estimating Spatially Varying Thermal Conductivity and Heat Capacity Per Unit Volume,” Numerical Heat Transfer, Part A, Vol. 16, pp. 249-266, 1996.
    28. Flach G. P.and Ozisik M. N., “Analysis of Sequential Method of Solving the Inverse Heat Conduction Problem,” Numerical Heat Transfer, Part B, Vol. 24, pp. 455-474, 1993.
    29. Blanc G. and Raynaud M., “Solution of the Inverse Heat Conduction Problem from Thermal Strain Measurements,” ASME J. Heat Transfer, Vol. 118, pp. 842-849, 1996.
    30. Lin J., Lee S. L. and Weng C. I. “Estimation of Cutting Temperature in High Speed Machining,” ASME J. Engineering Materials and Technology, Vol. 114, pp. 289-296, 1996.
    31. Lam T. T. and Yeung W. K., “Inverse Determination of Thermal Conductivity for One-Dimensional Problems,” J. Thermophysics and Heat Transfer, Vol. 9, No. 2, pp. 335-344, 1995.
    32. Yeung W. K. and Lam T. T., “Second-Order Finite Difference Approximation for Inverse Determination of Thermal Conductivity,” Int. J. Heat Mass Transfer, Vol. 39, No. 17, pp. 3685-3692, 1996.
    33. Liu F. B. and Ozisik M. N., ”Simultaneous Estimation of Fluid Thermal Conductivity and Heat Capacity in Laminar Duct Flow,” J. Franklin Inst., Vol. 333(B), No. 4, pp. 583-591, 1996.
    34. Bass B. R. and Ott L. J.,”A Finite Element Formulation of the Two-Dimensional Inverse Heat Conduction Problem,” Adv. Comput. Technol., Vol. 2, pp. 238-248, 1980.
    35. Yoshimura T. and Ituka K., “Inverse Heat Conduction Problem by Finite Element Formulation,” Int. J. Systems Sci., Vol. 16, pp. 1365-1376, 1985.
    36. Liu Y. and Murio D. A., “Numerical Experiments in 2-D IHCP on Bounded Domains Part I: The Interior Cube Problem,” Computer Math. Application, Vol. 31, No. 1, pp. 15-32, 1996.
    37. Zabaras N. and Liu J. C., “An Analysis of Two-Dimensional Linear Inverse Heat Conduction Problems Using an Integral Method,” Numerical Heat Transfer, Vol. 13, pp. 527-533, 1988.
    38. Busby H. R. and Trujillo D. M., “Numerical Solution to a Two-Dimensional Inverse Heat Conduction Problem,” Int. J. for Numerical Methods in Engineering, Vol. 21, 349-359, 1985.
    39. Huang C. H. and Ozisik M. N., “Inverse Problem of Determining the Unknown Strength of an Internal Plate Heat Source,” J. Franklin Inst., Vol. 329, pp. 751-764, 1992.
    40. Silva Neto A. J., Ozisik M. N., Two-Dimensional Inverse Heat Conduction Problem of Estimating the Time-Varying Strength of a Line Heat Source, J. Appl. Phys., Vol. 71, No. 11, pp. 5357-5362, 1992.
    41. Silva Neto A. J., Ozisik M. N., “Inverse Problem of Simultaneously Estimating the Timewise-Varying Strengths of Two Plane Heat Sources,” Journal of Applied Physics, Vol. 73 No. 5, pp. 2132-2137, 1993.
    42. Li H. Y. and Yan W. M., “Identification of Wall Heat Flux for Turbulent Forced Convection by Inverse Analysis,” Int. J. Heat Mass Transfer, Vol. 46, pp. 1041-1048, 2003.
    43. Liu L. H., Tan H. P. and He Z. H., “Inverse Radiation Problem of Source Item in Three-Dimensional Complicated Geometric Semitransparent Media,” Int. J. Therm. Sci., Vol. 40, pp. 528-538, 2001.
    44. Huang C. H. and Ozisik M. N., ”Inverse Problem of Determining Unknown Wall Heat Flux in Laminar Flow Through a Parallel Plate Duct,” Numerical Heat Transfer A, Vol. 21, pp. 55-70,1992.
    45. Huang C. H. and Ozisik M. N., “Conjugate Gradient Method for Determining Unknown Contact Conductance during Metal Casting,” Int. J. Heat Mass Transfer, Vol. 35, pp. 1797-1786, 1992.
    46. Huang C. H. and Ju T. M., “Inverse Problem of Determining the Periodic Thermal Contact Conductance between Exhaust Valve and Seat an Internal Combustion Engine,” ASME 1993 National Heat Transfer Conference Paper, No. 93-HT-35, Atlanta, GA , 1993. (8-11 Aug.)
    47. Huang C. H. and Wu J. Y., “Two Dimensional Inverse Problem of Estimating Heat Fluxes inside Internal Combustion Engines,” J. Appl. Phys., Vol. 76 (1), 1994.
    48. Huang C. H., Ju T. M., and Tseng A. A., “The Estimation of Surface Thermal Behavior of the Working Roll in Hot Rolling Process,” International Journal of Heat and Mass Transfer, Vol.38, No. 6, pp. 1019-1031, 1995.
    49. Huang C. H. and Wu J. Y., “An Inverse Problem of Determining Two Boundary Heat Fluxes in Unsteady Heat Conduction of Thick-Walled Circular Cylinder,” Inverse Problems in Engineering, Vol. 1, No. 2, pp. 133-151, 1995.
    50. Huang C. H. and Yan J. Y., “An Inverse Problem in Simultaneously Measuring Temperature-Dependent Thermal Conductivity and Heat Capacity,” International Journal of Heat and Mass Transfer, Vol. 38, No. 18, pp. 3433-3441, 1995.
    51. Huang C. H. and Wu J. Y., “Function Estimation in Predicting Temperature-Dependent Thermal Conductivity without Internal Measurements,” J. of Thermophysics and Heat Transfer, Vol. 9, No. 4, pp. 667-673, 1995.
    52. Huang C. H. and Hsiung T. Y., “An Inverse Design Problem of Estimating Optimal Shape of Cooling Passages in Turbine Blades,” International Journal of Heat and Mass Transfer, Vol. 42, pp. 4307-4319.
    53. Chen H. T. and Chang S. M., “Application of the Hybrid Method to Inverse Heat Conduction Problems,” International Journal of Heat and Mass Transfer, Vol. 33, No. 4, pp. 621-628, 1990.
    54. Chen H. T. and Lin J. Y., “Analysis of Two-Dimensional Hyperbolic Heat Conduction Problems,” International Journal of Heat and Mass Transfer, Vol. 37, No. 1, pp. 153-164, 1994.
    55. Chen H. T., Lin J. Y., Wu C. H. and Huang C. H., “Numerical Algorithm for Estimating Temperature-Dependent Thermal Conductivity”, Numerical Heat Mass Transfer, Part B, Vol. 29, pp. 509-522, 1996
    56. Chen H. T., Lin S.Y., and Fang L. C., “Estimation of Surface Temperature in Two-Dimensional Inverse Heat Conduction Problems,” International Journal of Heat and Mass Transfer, Vol. 44, pp. 1455-1463, 2000.
    57. Chen H. T., Lin S.Y., Wang H. R. and Fang L. C., "Estimation of Two-Sided Boundary Conditions for Two-Dimensional Inverse Heat Conduction Problems," International Journal of Heat and Mass Transfer, Vol. 45, pp. 15-23, 2002.
    58. Yang C. Y., “A Sequential Method to Estimate The Strength of The Heat Source Based on Symbolic Computation,” International Journal of Heat and Mass Transfer, Vol. 41, No. 14, pp. 2245-2252, 1998.
    59. Yang C. Y., “The Determination of Two Heat Sources in an Inverse Heat Conduction Problem,” International Journal of Heat and Mass Transfer, Vol. 42, pp.345-356, 1999.
    60. Yang C. Y., “Inverse Estimation of Mix-typed Boundary Conditions in Heat Conduction Problems,” Journal of Thermophysics and Heat Transfer, Vol. 12, No. 4, pp. 552-561, 1998.
    61. Beck J. V., Blackwell B. and Clair C. R. St., “Inverse Heat Conduction: Ill-Posed Problem”, Wiley, New York, 1985.
    62. Chantasiriwan S., “Comparison of Three Sequential Function Specification Algorithms for the Inverse Heat Conduction Problem,” Int. Comm. Heat Mass Transfer, Vol. 26, No. 1, pp. 115-124, 1999.
    63. Chantasiriwan S., “Inverse Heat Conduction Problem of Determining Time-dependent Heat Transfer Coefficient,” International Journal of Heat and Mass Transfer, Vol. 42, pp. 4275-4285, 2000.
    64. Chantasiriwan S., “An Algorithm for Solving Multidimensional Inverse Heat Conduction Problem,” International Journal of Heat and Mass Transfer, Vol. 44, pp. 3823-3832, 2001.
    65. Blanc G., Raynaud M. and Chau T. H., “A Guide for the Use of the Function Specification Method for 2D Inverse Heat Conduction Problem,” Rev Gen Therm., Vol. 37, pp. 17-30, 1998.
    66. Kim T. G. and Lee Z. H., “Time-varying Heat Transfer Coefficients Between Tube-shaped Casting and Metal Mold,” International Journal of Heat and Mass Transfer, Vol. 40, No 15, pp. 3513-3525, 1997.
    67. Chu Y. H., Hsu P. T. and Liu Y. H., “A Two-Dimensional Inverse Problem in Estimating the Heat Generation Rate in an Electronic Device,” Journal of the Chinese Society of Mechanical Engineers, Vol. 23, No. 6, pp. 567-576, 2002.
    68. Spitler J. D., Pedersen C. O. and Fisher D. E., “Interior Convective Heat Transfer in Buildings with Large Ventilative Flow Rates,” ASHRAE Transactions, Vol. 97, pp. 505-515, 1991.
    69. Lomas K. J., “The UK Applicability Study: an Evaluation of Thermal Simulation Programs for Passive Solar House Design. Building and Environment,” Vol. 31, No. 3, pp. 197-206, 1996.
    70. Fisher D. E. and Pedersen C. O., “Convective Heat Transfer in Building Energy and Thermal Load Calculations,” ASHRAE Transactions, Vol. 103, No. 2, pp. 137-148, 1997.
    71. Beausoleil-Morrison I, “The Adaptive Simulation of Convective Heat Transfer at Internal Building Surfaces,” Building and Environment, Vol. 37, No. 8-9, pp. 791-806, 2002.
    72. Khalifa A. J., “Natural Convective Heat Transfer Coefficient – a Review I. Isolated Vertical and Horizontal Surfaces,” Energy Conversion & Management, Vol.42, pp. 491-504, 2001.
    73. Khalifa A. J., “Natural Convective Heat Transfer Coefficient – a Review II. Surfaces in Two- and Three-Dimensional Enclosures. ,” Energy Conversion & Management, Vol. 42, pp. 505-517, 2001.
    74. ASHRAE, “ASHRAE Handbook of Fundamentals,” American Society of Heating Refrigeration and Air-conditioning Engineers, USA, 1985.
    75. Awbi H. B., “Hatton A. Natural Convection from Heated Room Surfaces,” Energy and Buildings, Vol.30, pp.233-244, 1999.
    76. Jayamaha S. E. G., Wijeysundera N. E. and Chou S. K., “Measurement of the Heat Transfer Coefficient for Walls,” Building & Environment, Vol. 31, No 5, pp. 399-407, 1996.
    77. Hagishima A. and Tanimoto J., “Field Measurements for Estimating the Convective Heat Transfer Coefficient at Building Surfaces,” Building & Environment, Vol. 38, No 7, pp. 873-881, 2003.
    78. Khalifa A. J. and Abdullah S. E., “Buoyancy Driven Convection in Undivided and Partially Divided Enclosures,” Energy Conversion & Management, Vol. 40, No 7, pp. 717-727, 1999.
    79. Chrni S., “The Temperature and Thermal Stress in Rolling and Metal Strip,” Ph. D. thesis, Carnegie-Mellon Univ., Pittsburgh, Pa., 1961.
    80. Hogshead T. H., “Temperature Distributions in Rolling of Metal Strip,” Ph. D. thesis, Carnegie-Mellon Univ., Pittsburgh, Pa., 1967.
    81. Haubitzer W., “Steady-State Temperature Distributions in Rolls,” Arch. Eisenhuettenwes., Vol. 46, pp. 635-638, 1974.
    82. Patula E. H., “Steady-State Temperature Distributions in Rotating Roll Subject to Surface Heat Fluxes and Convection Cooling,” J. of Heat Transfer, Trans., ASME, Vol. 103, pp. 36-41, 1981.
    83. Tseng A. A., Lin F. H., Gunderia A.S., Ni D. S., “Roll Cooling and Its Relationship to Roll Life,” Metall. Trans. Vol. A 20, pp. 2305-2320, 1989.
    84. Huang C. H., Ju T. M. and Tseng A. A., “The estimation of surface thermal behavior of the working roll in hot rolling process,” International Journal of Heat and Mass Transfer, Vol. 38, No. 6, pp. 1019-1031, 1995.
    85. Hsu P. T., Chen C. K. and Yang Y. T., “A Three-Dimensional Inverse Problem of Estimating the Surface Thermal Behavior of the Working Roll in Rolling Process,” Trans. ASME Journal of Manufacturing Science and Engineering, Vol. 122, pp. 76-82, 2000.
    86. Tseng A. A., “Finite Difference Solutions for Heat Transfer in a Roll Rotating in High Speed,” Numerical Heat Transfer Vol. 7, pp. 113-125, 1984.
    87. Users Manual, Math Library version 1.0, IMSL Library edition 10.0, IMSL, Houston, TX, 1987.

    下載圖示 校內:立即公開
    校外:2004-01-12公開
    QR CODE