簡易檢索 / 詳目顯示

研究生: 陳易呈
Chen, Yi-Cheng
論文名稱: 高解析度光機電致動感測系統之研製
Design and Fabrication of High-resolution Opto-Mechatronics Actuation and Sensing System
指導教授: 沈聖智
Shen, Sheng-Chih
學位類別: 博士
Doctor
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2019
畢業學年度: 108
語文別: 英文
論文頁數: 127
中文關鍵詞: 光學式旋轉型編碼器光電二極體陣列污染容忍對稱型壓電元件微型推子多連桿預壓機構
外文關鍵詞: Optical Rotary Encode, Photodiode Array (PDA), Pollution Tolerance, Symmetric Piezoelectric Element (SPE), Micro-pusher, Multi-link Preload Mechanism
相關次數: 點閱:122下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自德國政府率先提出「工業4.0計畫」(Industry 4.0)以來,便引發全球製造業進入智慧製造的時代,然而製造智慧化的基礎來自產線設備的各項感測元件、運動與控制、通訊,以及資訊整合與運算的能力。對於製造設備而言,超精密運動的定位技術決定著製造、組裝,甚至是量測的能力與層次,故本研究即以開發一超高解析度光學編碼器為目標,並透過對稱型壓電元件進行驅動,實現一高解析度光機電致動感測系統。
    編碼器使用場域常伴隨油氣、灰塵等污染因素,造成編碼圖案遭覆蓋而導致誤判,本研究即針對此問題提出一基於質數編碼(Prime encoding)及曼徹斯特編碼(Manchester encoding)原則之編碼方式完成一具備10-bit/rev.解析能力且可容污之絕對式編碼;在均勻隨機分布的條件下,本研究所提之光學編碼可容許之髒污覆蓋面積可達11.25%,可適度的提升對於污染的容忍度;此外,本文也引入均勻設計實驗方法結合倒傳遞類神經網路(Back-propagation neural network, BPNN)進行細分割編碼之最佳尺寸設計,經實測,最佳之尺寸可得到動態範圍1.49V、半徑變異5.8%之之李沙育圖形(Lissajous plot),提供編碼器14 bits之細分割的解析能力,結合上述之絕對式編碼可使綜效解析度達24-bit/rev。在驗證部分,本研究利用海德漢(Heidenhain) ROQ 437編碼器進行準確度(Accuracy)及精度(Precision)之測試,結果顯示本研究所開發之編碼器與ROQ 437之角度差異最大為0.0102°,精度則介於0.00028°至0.00079°,角度之有效位數達小數點後4位。在驅動部分則以一對稱型壓電元件(Symmetric Piezoelectric Element, SPE)與多連桿式預壓力機構(Multi-link Preload Mechanism)設計旋轉平台,完成壓電直驅旋轉平台之設計,最終將其與光學編碼器結合為高解析度光機電致動感測系統。
    本研究透過創新的編碼原則以及系統化的最佳尺寸設計完成了一可容汙之絕對式碼盤,透過幾何光學設計、感測電路設計、壓電元件動態分析、驅動機構與電路設計等方法,最終實現了一綜效解析度達24-bit/rev.之絕對式光機電致動感測系統並驗證其可行性,未來可針對編碼器之光機進行進一步的精密組裝設計與細分割訊號補正,預期可改善角度訊號輸出之穩定性,進而提升角度感測的有效位數。

    The introduction by the German government of “Industrie 4.0” (Industry 4.0) triggered the era of smart manufacturing in global manufacturing. However, the foundation of smart manufacturing lies in the various sensing components, motion and control, and communication of production line equipment, and its ability to integrate and compute information. For manufacturing equipment, the manufacture, assembly, and measuring ability and level are dependent on the ultra-precision motion positioning technology used. Therefore, this study aimed to develop an high-resolution optical encoder driven by symmetric piezoelectric elements (SPEs) to create a high-resolution opto-mechatronics actuation and sensing system.
    The field of application of encoders is often influenced by pollution factors such as oil gas and dust, which leads to misreading because the encoding pattern is covered. This study proposed an encoding method that combines the prime encoding and Manchester encoding to achieve 10-bit/rev. absolute encoder with pollution tolerance. Under the condition of uniform random distribution, an optical encoder can tolerate 11.25% of the coverage area. Pollution tolerance can be appropriately enhanced according to the actual use environment. Additionally, this study introduced the method consists of uniform design and back-propagation neural network (BPNN) to find the optimal dimensions for transmission grating and incremental photodiodes (PDs). After actual testing, the optimal dimensions were obtained with a relating ADC value to the voltage of 1.49 V and Lissajous plot with 5.8% radial variation, providing the encoder with a 14 bits interpolation resolution capability, achieving the target of designing a 24-bit/rev. high-resolution absolute optical rotary encoder. The Heidenhain ROQ 437 encoder was used to verify the proposed design. The results revealed that the maximum angle difference between the encoder developed in this study and the ROQ 437 encoder was approximately 0.0102°. The precision ranged between 0.00028° and 0.00079°, and the significant digits of the angle were 4 digits after the decimal point. For the actuator, this study used an SPE and multi-link preload mechanism to design a rotary platform, completing the design of a piezoelectric direct drive rotary platform, which was then integrated with the absolute rotary optical encoder to form a high-resolution opto-mechatronics actuation and sensing system.
    This study designed an absolute encoding disk with pollution tolerance through innovative encoding principles and a systematic optimal dimension design. Based on a geometric optics design, photodiode array (PDA) sensing circuit design, dynamic analysis of piezoelectric elements, and drive mechanism and circuit design, an absolute opto-mechatronics actuation and sensing system was achieved with a 24-bit/rev. synergy resolution and its feasibility was verified. Future studies could design a more advanced opto-mechanical precision assembly for the encoder and apply the signal error compensation method to improve the stability of angle signal output, thus enhancing the significant digits for angle sensing.

    Acknowledgements....................................... I Abstract in Chinese................................... II Abstract.............................................. IV Table of Contents..................................... VI List of Figures ...................................... IX List of Tables ...................................... XIV 1 Introduction ........................................ 1 1.1 Motivations and objectives ........................ 1 1.2 Adopted technologies .............................. 3 1.2.1 Principles of an optical encoder ................ 3 1.2.2 Design of piezoelectric actuator ................ 5 1.3 Thesis structure .................................. 8 2 Literature Review .................................. 11 2.1 Introduction of the encoder ...................... 11 2.2 Optical rotary encoders .......................... 13 2.2.1 Incremental optical rotary encoders ............ 14 2.2.2 Absolute optical rotary encoders ............... 17 2.3 Introduction of the piezoelectric actuator ....... 23 2.4 Driving method of piezoelectric actuators ........ 24 2.4.1 Single-phase-driven piezoelectric actuators .... 25 2.4.2 Two-phase-driven piezoelectric actuators ....... 27 2.5 Driven mode of piezoelectric actuators selection............................................. 30 3 Design of absolute optical rotary encoder .......... 31 3.1 Code disk design ................................. 32 3.1.1 Absolute anti-pollution code design ............ 33 3.1.2 Analysis of the anti-pollution capability of absolute encoding .................................... 39 3.1.3 Optimal dimensions for transmission grating and incremental PDs ...................................... 44 3.2 Signal processing circuit design ................. 52 4 Direct-drive piezoelectric actuator design ......... 54 4.1 Characteristic parameters of the piezoelectric materials ............................................ 55 4.2 Vibration mode of piezoelectric ceramics ......... 58 4.3 Element design and trajectory .................... 60 4.4 Finite element analysis .......................... 66 4.5 Optimal dimension design ......................... 75 4.6 Design and analysis of a direct-drive piezoelectric actuator ............................................. 79 4.7 Measurements of DDPA features .................... 85 4.7.1 Measurement devices ............................ 85 4.7.2 Measurement of the resonance frequency ......... 86 4.7.3 Surface vibration amplitude measurement ........ 87 5 High-resolution opto-mechatronics actuation and sensing system design ........................................ 89 5.1 Integration of Encoder system .................... 90 5.1.1 PDA circuit and functional testing ............. 92 5.1.2 Opto-mechanical design and assembly of the encoder ...................................................... 94 5.1.3 Functional verification of absolute optical rotary encoder ............................................. 102 5.2 Micro-pusher and preload mechanism design ..................................................... 109 5.2.1 Production of the micro-pusher ................ 109 5.2.2 Preload mechanism design ...................... 109 5.3 Piezoelectric direct-drive rotary platform design 112 5.3.1 Drive circuit design .......................... 112 5.3.2 Integration and testing of the high-resolution opto-mechatronics actuation and sensing system ...... 114 6 Conclusion ........................................ 117 Reference ........................................... 120

    [1] https://www.bmbf.de/de/zukunftsprojekt-industrie-4-0-848.html
    [2] https://www.manufacturing.gov/
    [3] Chung-Hua Institution for Economic Research, http://www.cier.edu.tw/
    [4] K. M. Lee, J. Choi, Y. B. Bang, “Shaft position measurement using dual absolute encoders,” Sens. Actuators A, Phys., Vol. 238, pp. 276-281, 2016.
    [5] G. Hao, “A multiaxis, large-output, sensing framework of integrating linear optical encoders for nanopositioning systems,” IEEE Sensors Lett., Vol. 1, No. 3, pp. 1-4, 2017.
    [6] T. A. Tameh, M. Sawan, R. Kashyap, “Novel analog ratio-metric optical rotary encoder for avionic applications,” IEEE Sensors J., Vol. 16, No. 17, pp. 6586-6595, 2016.
    [7] M. Dimmler and C. Dayer, “Optical Encoders for Small Drives, IEEE/ASME Trans. Mechatronics,” Vol. 1, No. 3, pp.278-283, 1996.
    [8] Y. J. Luo, E. T. Hwang, S.-M. Huang, “Multi-pole magnetization of high resolution magnetic encoder,” Electrical Electronics Insulation Conf. and Electrical Manufacturing & Coil Winding Conf., pp. 237-242, Oct. 1993.
    [9] Y. Kikuchi, F. Nakamura, H. Wakiwaka, H. Yamada, “Consideration of magnetization and detection on magnetic rotary encoder using finite element method,” IEEE Trans. Magn., Vol. 33, No. 2, pp. 2159-2162, 1997.
    [10] S. H. Jeong, S. H. Rhyu, B. I. Kwon, B. T. Kim, “Design of the rotary magnetic position sensor with the sinusoidally magnetized permanent magnet,” IEEE Transactions on magnetics, Vol. 43, No. 4, pp. 1837-1840, 2007.
    [11] X. Gao, Q. H.Wan, J.H. Li, Y.T. Wang, R. S Pang, “Photoelectric shaft encoder error of moire fringe signal compensation,” Infrared and Laser Engineering, Vol. 44, No. 2, pp. 647-653, 2015.
    [12] M. Warner, V. Krabbendam, G. Schumacher, “Adaptive Periodic Error Correction for Heidenhain Tape Encoders,” Proc. SPIE7012, 70123N, 2008.
    [13] T. Watanabe, H. Fujimoto, K. Nakayama, T. Masuda, M. Kajitani, “Automatic high-precision calibration system for angle encoder (II),” Proc. of SPIE, 5190, pp. 400-409, 2003.
    [14] J. C. Huang, “Design and Fabrication of A Novel Multi-Degree-of Freedom Microactuator using Symmetric Piezoelectric Element,” Master’s Thesis, National Cheng Kung University, 2011.
    [15] N. S. Vatkar, Y. S. Vatkar “Piezoelectric Motors & It's Applications,” International Research Journal of Engineering and Technology (IRJET), Vol. 3, Issue 6, 2016.
    [16] M. Dimmler, C. Dayer, “Optical Encoders for Small Drives,” IEEE/ASME Trans. Mechatronics, Vol.1, No3, pp.278-283, 1996.
    [17] S. J. Ovaska, “Improving the velocity sensing resolution of pulse encoders by FIR prediction,” IEEE Trans. Instrum. Meas. Vol. 40, No.3, pp. 657-658, 1991.
    [18] Encoder products company, http://encoder.com/
    [19] S. Das, T. Subhra Sarkar, “A new method of linear displacement measurement utilizing a grayscale image,” International Journal of Electronics and Electrical Engineering, Vol. 1, No. 3, pp. 176-181, 2013.
    [20] J. J. Lee, M. Shinozuka, “A vision-based system for remote sensing of bridge displacement,” NDT & E International, Vol. 39, No. 5, pp. 425-431, 2006.
    [21] J.J. Lee, M. Shinozuka, “Real-time displacement measurement of a flexible bridge using digital image processing techniques,” Experimental Mechanics, Vol. 46, Issue 1, pp. 105-114, 2006.
    [22] Y. T. Chen, “Design and Manufacture for the Rotary Encoder,” Master’s Thesis, Mingdao University, 2010.
    [23] N. Hagiwara, Y. Suzuki, H. Murase, “A method of improving the resolution and accuracy of rotary encoder using a code compensation technique,” IEEE Transactions on Instrumentation and Measurement, Vol. 41, Issue 1, pp. 98-101, 1992.
    [24] C.Y. Wu C.W. Chang, M.T. Ho, “A subdivision method for improving resolution of analog encoders,” International Automatic Control Conference (CACS), 2017.
    [25] H. Rieder, M. Schwaiger, RSF. Elektronik, GmbH. Tarsdorf, Austria, “Method of Electronically Correcting Position Errors in an Incremental Measuring System and Measuting System for Carrying out the Method,” United States Patent: 5021650, June 1991.
    [26] T. Emura, L. Wang, A. Arakawa, “A High-Resolution Interpolator for Incremental Encoders By Two-Phase Type PLL Method,” Proceedings of the International Conference on Industrial Electronics Control and Instrumentation, Vol. 3, pp. 1540-1545, 1993.
    [27] C.F. Lan, “Development of Electronic Subdivision with FPGA and Its Application in Grating Interferometer,” Master’s Thesis, National Taiwan University, 2011.
    [28] N. Johnson,K.J. Mohan, K.E. Janson, J. Jose, “Optimization of incremental optical encoder pulse processing,” International Mutli-Conference on Automation, Computing, Communication, Control and Compressed Sensing (iMac4s), pp. 769-773, 2013.
    [29] N. Ekekwe, R. Etienne-Cummings, "P. Kazanzides, “Incremental Encoder Based Position and Velocity Measurements VLSI Chip with Serial Peripheral Interface,” IEEE International Symposium on Circuits and Systems, pp. 3558-3561, 2007.
    [30] F. Briz, J. A. Cancelas, and A. Diez, “Speed measurement using rotary encoders for high performance AC drives,” Proceedings of IECON'94 - 20th Annual Conference of IEEE Industrial Electronics, pp. 538-542, 1994.
    [31] F. Janabi-Sharifi, V. Hayward, C.S. J. Chen, “Discrete-Time Adaptive Windowing for Velocity Estimation,” IEEE Transactions on Control Systems Technology, Vol. 8, Issue 6, pp.1003-1009, 2000.
    [32] J. N. Lygouras, T. P. Pachidis, K. N. Tarchanidis, V. S. Kodogiannis, “Adaptive High-Performance Velocity Evaluation Based on a High-Resolution Time-to-Digital Converter,” IEEE Transactions on Instrumentation and Measurement, Vol. 57, Issue 9, pp. 2035-2043, 2008.
    [33] D. H. Symonds, “Position encoder utilizer special gray code,” U.S. Patent No. US5049879A, 1991.
    [34] D. A. Fox, “Position detector utilizing gray code format,” U.S. Patent No. US4901072A, 1990.
    [35] M. Schwartz, T. Etzion, “The structure of single-track Gray codes,” IEEE Trans. Inf. Theory, Vol. 45, No. 7, pp. 2383-2396, 1999.
    [36] F. Zhang, H. Zhu, “Single-track Gray codes with non-k-spaced heads,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), pp. 311-315, 2013.
    [37] C. D. Savage, “A survey of combinatiorial Gray codes,“ SIAM Rev., Vol. 39, No. 4, pp. 605-629, 1997.
    [38] K. Fujita, T. Nakayama, Y. Matsuzoe, “Recent encoder technology,” Fuji Elect. Rev. 46, pp. 57-61, 2000.
    [39] H. Ai, L. Li, “The study of encoding principle and encoding disc design of a new-style Vernier absolute encoder,” in Proc. Int. Conf. Elect. Control Eng., pp. 3271-3273, 2011.
    [40] E. M. Petriu, “Absolute-type position transducers using a pseudorandom encoding,” IEEE Trans. Instrum. Meas., Vol. TIM-36, No. 4, pp. 950-955, 1987.
    [41] G. H. Tomlinson, “Absolute-type shaft encoder using shift register sequences,” Electron. Lett., Vol. 23, No. 8, pp. 398-400, 1987.
    [42] Y. Matsuzoe, N. Tsuji, T. Nakayama, K. Fujita, T. Yoshizawa, “High-performance absolute rotary encoder using multitrack and M-code,” Optical Engineering, Vol. 42, No. 1, 2003.
    [43] W. Qiu-Hua, W. Yuan-Yuan, S. Ying, and Y. Shou-Wang, “A novel miniature absolute metal rotary encoder based on single-track periodic Gray code,” 2nd International Conference on Instrumentation, Measurement, Computer, Communication and Control, pp. 399-402, 2012.
    [44] M. Schwartz,T. Etzion, “The structure of single-track Gray codes,” IEEE Transactions on Information Theory, Vol. 45, Issue 7, pp. 2383-2396, Nov. 1999.
    [45] F. Zhang and H. Zhu, “Single-track Gray codes with non-k-spaced heads,” IEEE International Symposium on Information Theory, pp. 311-315, 2013.
    [46] F. Zhang, H. Zhu, Y. Li, C. Qiu, “Upper bound of single-track Gray codes and the combined coding method of period 2n,” in Proc. 8th Int. Forum Strategic Technol. (IFOST), pp. 405-409, 2013.
    [47] T. Dziwi´nski, “A Novel Approach of an Absolute Encoder Coding Pattern,” IEEE SENSORS JOURNAL, Vol. 15, No. 1, 2015.
    [48] R. Mittmann, “Procedure for the determination of an absolute position,” U.S. Patent No. US20040133844A1, 2006.
    [49] E. Strasser, “Position measuring instrument,” U.S. Patent No. US20040129870A1, 2007.
    [50] I. Fukui, T. Hamatsuki, T. Yano, E. Sato, “Impact printer head capable of printing a dot at a distance narrower than a thickness of a printer unit,” U.S. Patent No. 4589786, 1986.
    [51] T. Sashida, T. Kenjo, “An Introduction to Ultrasonic Motors,” New York, Clarendon Press, Ch1,1993.
    [52] http://www.nasatech.com/Briefs/Oct01/NPO20984.html
    [53] Physik Instrumente (PI) GmbH & Co., http://www.pi.ws/
    [54] Elliptec Corp., http://www.elliptec.com/
    [55] Konica Minolta Inc., http://konicaminolta.com/
    [56] K. Otokawa, K. Takemura, T. Maeno, “A Multi-Degree of Freedom Ultrasonic Motor Using Single-Phase-Driven Vibrators,” Nihon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, Vol. 73, No. 2, pp. 577-582, 2007.
    [57] C.W. Chen, “Analysis and Implementation of a Novel Single-Phase Ultrasonic Motor, unpublished thesis,” Master’s Thesis, National Cheng Kung University, 2007.
    [58] O. Vyshnevskyy, S. Kovalev, W. Wischnewskiy, “A Novel, Single-Mode Piezoceramic Plate Actuator for Ultrasonic Linear Motors,” IEEE transactions on ultrasonics, ferroelectrics, and frequency control, Vol. 52, No. 11, pp. 2047-2053, 2005.
    [59] K. Spanner, O. Vyshnevskyy, W. Wischnewskyy, “New Linear Ultrasonic Micromotor for Precision Mechatronic Systems,” Physik Instrumente GmbH & Co. KG, Karlsruhe, Germany, 2006.
    [60] W. Wischnewskiy, S. Kovalev, J.Rapp, O.Vyshnevskyy,” Simple New Ultrasonic Piezoelectric Actuator for Precision Linear Drives,” Physik Instrumente GmbH & Co. KG, Karlsruhe, Germany,2006.
    [61] Nanomotion LTD., http://www.nanomotion.com/
    [62] S.T. Ho, “Characteristics of the Linear Ultrasonic Motor using an Elliptical Shape Stator,” Japanese Journal of Applied Physics, Vol. 45, No. 7, pp. 6011-6013, 2006.
    [63] C. Lu, T. Xie, T. Zhou, Y. Chen, “Study of a new type linear ultrasonic motor with double-driving feet,” Ultrasonics, Vol. 44, pp. e585-e589, 2006.
    [64] T. Hemsel, M. Mracek, J. Wallaschek, P. Vasiljev, “A novel approach for high power ultrasonic linear motors,” in Proc. IEEE Ultrasonics Symposium, Vol. 2, pp. 1161-1164, 2004.
    [65] Y.C. Chen, S.C. Shen “Design and Fabrication of High Resolution Diffractive Optical Encoder,” Journal of the Chinese Society of Mechanical Engineers, Vol. 39, No. 3, pp. 311-317, 2018.
    [66] F. Gray, Pulse code communication, U.S. Patent No. US2632058A, 1953.
    [67] W. F. Wong, C. F. Lum, S. L. Foo, S. W. Ooi, K. H. Leong, Y. F. Soo, S. H. Hung, Gin Ghee Tan, “Optical encoder with sinusoidal photodetector output signal,” U.S. Patent No. US7399956B2, 2005.
    [68] Y. Wang and K. T. Fang, “A Note on Uniform Distribution and Experimental Design,” Kexue Tongbao, Vol. 26, No. 6, pp. 485-489, 1981.
    [69] 方開泰,均勻設計與均勻設計表,科學出版社,北京,1994。
    [70] 方開泰,正交與均勻試驗設計,科學出版社,北京,2007。
    [71] 曾昭鈞,均勻設計及其應用,中國醫藥科技出版社,北京,2005。
    [72] 周至宏,模糊理論應用,國立高雄應用科技大學,高雄,2015。
    [73] 周至宏,最佳化方法,國立高雄應用科技大學,高雄,2015。
    [74] 蔡彥柔,均勻設計法於最佳化系統參數實驗設計之應用,碩士論文,國立高雄應用科技大學,高雄,2016。
    [75] K.H. Long, S.W. Yang, J.Q. He, L. Chou, “Temperature Characteristics and Compensation of Photoelectrical Encoder.” ACTA Optics Journal, Vol. 29, P320-323, 2009.
    [76] http://lab.es.ncku.edu.tw/leehh/ANSYS/ANSYS.htm
    [77] J.C. Liu, C.H. Chu, “Engineering Applications of Finite Element Analysis with ANSYS.” Tsang Hai Publishing, Taichung, P452-505, 2006.
    [78] S.W. Hsiao, M.C. Tsai, “Single-Phase Drive Linear Ultrasonic Motor with Perpendicular Electrode Vibrator,” Japanese Journal of Applied Physics, Vol. 49, pp. 024201-1, 2010.
    [79] S. T. HO, “Characteristics of the Linear Ultrasonic Motor using an Elliptical Shape Stator,” Japanese Journal of Applied Physics, Vol. 45, No. 7, pp. 6011-6013, 2006.
    [80] S.L. Sharp, J.S.N. Paine, J.D. Blotter, “Design of a Linear Ultrasonic Piezoelectric Motor,” Journal of Intelligent Material Systems and Structures, Vol. 21, July, pp.961-973, 2010.

    無法下載圖示 校內:2025-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE