簡易檢索 / 詳目顯示

研究生: 張雅涵
Chang, Ya-Han
論文名稱: 影像在縮放與旋轉下的最佳化比對
An Optimal Template Matching with Scaling and Rotation
指導教授: 沈士育
Shen, Shih-Yu
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 92
中文關鍵詞: 最小二乘法梯度下降法
外文關鍵詞: Template matching, Image processing, Least square method, Gradient descent
相關次數: 點閱:100下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 論文針對影像間的誤差做了研究,進而找出影像間的轉換關係,在這裡的轉換關係為旋轉、平移和旋轉與縮放。探討的內容是如何從已知的兩張影像,經過程式計算求出兩張影像間的誤差或轉換關係,使用的數學模型為最小二乘法與梯度下降法。在第三章中,先設定一張標準影像和一張要比對的影像,求出影像間的轉換關係,此時影像間的轉換關係是已知的,再將兩張影像根據計算的結果進行轉換,進而做比對。比對的方法是取這兩張影像的每個像素點的 RGB 值,將這些 RGB 值處理成陣列形式,再來把兩張影像的值依序分別相減,若是比對完的結果大致上都為黑色,代表兩張影像相似且該轉換關係正確,再來,將影像間的轉換關係放大,變成大角度旋轉、大角度旋轉與大縮放,確認是否依舊能求出影像間的轉換關係。在第四章中,則針對兩張未知轉換關係的影像進行實際比對,證實是否真的能求出之間的轉換關係。最後,針對幾個應用進行討論。

    This paper will discuss how to obtain the transformation relationship from two similar images. In this paper, The transformation relationship is rotation, translation, rotation and scaling. One image is subtracted from another image by subtracting the RGB value of each pixel of the image from the first point to the last point of the image subtract sequentially. If the result of the comparison is generally black, it means that the two images are similar and the transformation relationship is correct. In the second chapter, it will introduce some mathematical model, including the least square method and gradient descent. In the third chapter, the transformation is set to be discussed in case of rotation, translation, rotation and scaling, that is, in the known transformation relationship. Then, we want to discuss if the rotation angle and scaling become larger, the result is still correct. In the forth chapter, two images are actually taken, so the transformation relationship is unknown. We want to check the result is correct. In the fifth chapter, there are some applications and conclusions.

    第一章 介紹 1.1 前言 ································ 1 1.2 影像的模型 ·························· 2 1.3 影像處理的應用 ······················ 6 1.4 MFC 與 CImage 的使用方法和技巧 ····· 8 1.5 其他章節簡介 ························ 11 第二章 數學模型 2.1 影像變形與影像距離 ·················· 12 2.2 最小二乘法與梯度下降法 ···············15 2.3 偏導數與方向導數 ···················· 20 2.4 誤差之微分 ·························· 24 第三章 模擬測試 3.1 旋轉誤差 ···························· 34 3.2 平移誤差 ···························· 40 3.3 旋轉與縮放誤差 ······················ 49 3.4 大角度旋轉與大縮放的情況 ············ 57 第四章 實際比對 4.1 平移誤差之比對 ······················ 65 4.2 旋轉與縮放誤差之比對 ················ 70 第五章 其他應用與結論 5.1 其他應用 ···························· 77 5.2 結論 ································ 90 參考資料 ···························· 91

    [1] 陳一昌 (2004), 車牌影像辨識系統與號牌設計改進配合措施之探討; 交通部運輸研究所
    [2] http://apisc.com/aoi-introduction.htm
    [3]ImageProcessing: TheFundamentals,MariaPetrou Costas Petrou
    [4] 林泓宏 (2017), 什麼是數位影像; 國內學術電子期刊-科學發展-第 539 期
    [5]GeoffDougherty(2009).“DigitalImageProcessing for Medical Applications”; Cambridge University Press
    [6] 尹成、顏成鋼 (2011), 王者歸來:VisualC++2010 開發權威指南; 佳魁資訊
    [7] https://www.clear.rice.edu/comp360/lectures/old/ AffineTransTextNew.pdf
    [8] Steven J. Leon (2015), Linear Algebra with Applications 9E; Pearson
    [9] Richard L. Burden, Douglas J. Faires, Annette M. Burden,NumericalAnalysis10E;CengageLearning

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE