簡易檢索 / 詳目顯示

研究生: 劉育銘
Liu, Yu-Ming
論文名稱: 利用STAR探測器在√sNN = 200 GeV的同量異位素對撞實驗中藉由雙電子末態測量J/ψ粒子的橢圓流
Measurements of the J/ψ elliptic flow via the dielectron decay channel in isobar collisions at √sNN = 200 GeV at STAR
指導教授: 楊毅
Yang, Yi
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 73
中文關鍵詞: STARQGPJ/ψ橢圓流同量異位素對撞實驗
外文關鍵詞: STAR, QGP, J/ψ, elliptic flow, isobar collisions
相關次數: 點閱:132下載:32
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 位於美國紐約長島的布魯克海文國家實驗室 (Brookhaven National Laboratory) 的相對論性重離子對撞機 (Relativistic Heavy Ion Collider) 中的 STAR 實驗在 2000 年開始運行,其中最重要的題目之一是了解夸克膠子電漿態(quark gluon plasma, QGP)的特性。由於重味夸克要比生成夸克膠子電漿態的能量要高,因此重味夸克是研究夸克膠子電漿態的重要之見。尤其利用J/ψ粒子研究夸克膠子電漿態對於生成截面以及橢圓流的影響可以讓我們更了解基本的量子色動力學。

    在這篇論文中,我們藉由使用 2018 年收集的質心能量為 200 GeV 的同量異位素(釕離子及鋯離子)對撞實驗數據,測量 J/ψ 粒子的 橢圓流 (elliptic flow, v2) 來研究在同量異位素對撞實驗中,J/ψ 粒子在夸克膠子電漿態下產生的生成抑制現象。

    The Solenoid Tracker At RHIC (STAR), which is located at Brookhaven National Laboratory, New York, on Long Island, is the only operating experiment at Relativistic Heavy Ion Collider (RHIC). Thus, it is one of the most important high energy nuclear physics experiments over the world. The STAR experiment started from 2000 and one of the most important topics for STAR is to comprehend the properties of quark gluon plasma (QGP). Since the energy for generating heavy flavor quarks is larger than creating QGP, the heavy flavor quarks in heavy-ion collisions is an important probe for understanding the QGP properties. Especially, the measurements of J/ψ production and the J/ψ elliptic flow (the second Fourier coefficient, v2) which are the hints of QGP can make us have more realization about basic Quantum Chromodynamics.

    In this thesis, we performed the study of J/ψelliptic flow by using the data of isobar collisions (Ru+Ru and Zr+Zr) at √sNN = 200 GeV collected in 2018.

    Abstract in Chinese i Abstract in English ii Acknowledgements iii Contents iv List of Tables vii List of Figures viii 1 Introduction 1 2 Theoretical overview 3 2.1 The Standard Model of particle physics 3 2.2 The J/ψ mesons 4 2.3 Quark-Gluon Plasma and Azimuthal Anisotropy 5 3 Experimental apparatus 13 3.1 Relativistic Heavy Ion Collider (RHIC) 13 3.2 The STAR Experiment 13 3.3 Magnet System 15 3.4 Time Projection Chamber (TPC) 16 3.5 Time-of-Flight (TOF) 17 3.6 Barrel Electromagnetic Calorimeter (BEMC) 19 3.7 Muon Telescope Detector (MTD) 19 4 Methodology of event plane angle and v_2 22 4.1 Event plane reconstruction 22 4.2 Event plane corrections 24 4.3 Event plane resolution 25 5 Measurement of J/ψ v_2 27 5.1 Dataset and basic selections 27 5.2 Monte Carlo embedding samples 29 5.3 Particle identification of electron candidates 29 5.3.1 The straight cut method for electron PID 30 5.3.2 The N-1 iteration method for electron PID 31 5.4 Efficiencies correction 32 5.4.1 Trigger efficiency 33 5.4.2 J/ψ kinematic acceptance 34 5.4.3 TPC tracking efficiency 35 5.4.4 Particle identification efficiency 36 5.5 The J/ψ signal reconstruction 39 5.6 J/ψ v_2^obs and event plane resolution 39 5.7 Systematic uncertainties 46 5.7.1 Signal extraction and the summation of cosine form 46 5.7.2 TPC tracking efficiency 55 5.7.3 Trigger efficiency 57 5.7.4 Total uncertainties 57 5.8 Results 59 6 Measurement of the J/ψ v_2 in Au+Au collisions at √sNN = 200 GeV 62 6.1 Dataset and basic selections 62 6.2 Additional selections of muon candidates 62 6.3 The J/ψ signal reconstruction 64 6.4 J/ψ v_2^obs and event plane resolution 64 7 Conclusions 69 References 70

    [1] G. Aad, E. Abat et al., “The ATLAS Experiment at the CERN Large Hadron Collider,” Journal of Instrumentation, vol. 3, 2008.
    [2] S. Chatrchyan, G. Hmayakyan, V. Khachatryan et al., “The CMS experiment at the CERN LHC,” Journal of Instrumentation, vol. 3, 2008.
    [3] J. Uzan, “The big-bang theory: construction, evolution and status,” arXiv preprint astro-ph.CO/1606.06112v1, 2016.
    [4] K. Ackermann et al., “STAR detector overview,” Nucl.Instrum.Meth.A, vol. 499, no. 2-3, 2003.
    [5] F. D. Aquino, “Theory of Everything,” arXiv:gr-qc/9910036, 2013.
    [6] H. Georgi and S. L. Glashow, “Unity of All Elementary-Particle Forces,” Phys. Rev. Lett., vol. 32, no. 8, 1974.
    [7] K. A. Olive et al., “Review of Particle Physics,” Chinese Physics C, vol. 38, no. 9, p. 090001, 2014.
    [8] G. Aad et al., “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC,” Phys. Lett. B, vol. 716, 2012.
    [9] N. Brambilla et al., “Heavy quarkonium physics,” arXiv preprint hep-ph/0412158, 2004.
    [10] P. W. Higgs, “Broken Symmetries and the Masses of Gauge Bosons,” Phys. Rev. Lett., vol. 13, no. 16, p. 508, 1964.
    [11] J. E. Augustin et al., “Discovery of a Narrow Resonance in e+e− Annihilation,” Phys. Rev. Lett., vol. 33, no. 23, pp. 1406–1408, 1974.
    [12] J. J. Aubert et al., “Experimental Observation of a Heavy Particle J,” Phys. Rev. Lett., vol. 33, no. 23, pp. 1404–1406, 1974.
    [13] A. Mocsy, P. Petreczky, and M. Strickland, “Quarkonia in the Quark Gluon Plasma,” International Journal of Modern Physics A, vol. 28, 2013.
    [14] L. Gang, W. ShuangTe, S. Mao, and L. JiPing, “Prompt heavy quarkonium production in association with a massive (anti)bottom quark at the LHC,” Phys. Rev. D, vol. 85, 2012.
    [15] G. C. Nayak, J.-W. Qiu, and G. F. Sterman, “NRQCD Factorization and Velocitydependence of NNLO Poles in Heavy Quarkonium Production,” Phys. Rev. D, vol. 74, 2006.
    [16] G. T. Bodwin, E. Braaten, and J. Lee, “Comparison of the colorevaporation model and the NRQCD factorization approach in charmonium production,” Phys. Rev. D, vol. 72, 2005.
    [17] F. Abe et al., “J/ψ and ψ (2S) production in p-p collisions at √s = 1.8 TeV,” Phys. Rev. Lett., vol. 79, 1997.
    [18] S. Chatrchyan et al., “J/ψ and ψ (2S) production in p-p collisions at √s = 7 TeV,” JHEP, vol. 02, 2012.
    [19] M. Krämer, “Quarkonium production at high-energy colliders,” Prog. Part. Nucl. Phys, vol. 47, 2001.
    [20] J. Adam et al., “Measurements of the transverse-momentum-dependent cross sections of J/ψ production at mid-rapidity in proton+proton collisions at √sNN = 510 and 500 GeV with the star detector,” Phys. Rev. D, vol. 100, 2019.
    [21] H. Satz, “Statistical Mechanics of Quarks and Hadrons”. Elsevier Science Ltd, 1981.
    [22] R. Gupta, “Introduction to lattice QCD,” arXiv:hep-lat/9807028, 1998.
    [23] K. Kawagoe and M. Mulders, “1st Asia-Europe-Pacific School of High-Energy Physics,” CERN Yellow Reports: School Proceedings, vol. CERN-2014-001, 2014.
    [24] M. Sumbera, “Results from STAR Beam Energy Scan Program,” arXiv:1301.7224 [nucl-ex], 2013.
    [25] T. Matsui and H. Satz, “J/ψ suppression by quark-gluon plasma formation,” Phys. Lett. B, vol. 178, no. 4, 1986.
    [26] R. J. Fries, B. Müller, C. Nonaka, and S. A. Bass, “Hadronization in Heavy-Ion Collisions: Recombination and Fragmentation of Partons,” Phys. Rev. Lett., vol. 90, 2003.
    [27] K. Yagi, T. Hatsuda, and Y. Miake, “Quark-Gluon Plasma”. Cambridge University Press, 2005.
    [28] A. Capella, L. Bravina, E. G. Ferreiro, A. B. Kaidalov, K. Tywoniuk, and E. Zabrodin, “Charmonium dissociation and recombination at RHIC and LHC,” Eur. Phys. J. C, vol. 58, 2008.
    [29] V. Guzey, M. Strikman, and W. Vogelsang, “Observations on dA scattering at forward rapidities,” Phys. Lett. B, vol. 603, 2004.
    [30] A. M. Poskanzer and S. A. Voloshin, “Methods for analyzing anisotropic flow in relativistic nuclear collisions,” Phys. Rev. C, vol. 58, no. 3, pp. 1671–1678, 1998.
    [31] L. Adamczyk et al., “Measurement of J/ψ Azimuthal Anisotropy in Au+Au Collisions at √sNN = 200GeV ,” Phys. Rev. Lett., vol. 111, no. 052301, 2013.
    [32] E. Abbas et al., “J/Psi Elliptic Flow in Pb-Pb Collisions at √sNN = 2.76 TeV,” Phys. Rev. Lett., vol. 111, no. 16, 2013.
    [33] K. M. Walsh and P. Genzer, Start-up of 22nd Run at the Relativistic Heavy Ion Collider (RHIC), Brookhaven National Laboratory, 2021.
    [34] “The Relativistic Heavy Ion Collider complex is actually composed of a long “chain"of particle accelerators,” https://www.bnl.gov/rhic/complex.php.
    [35] C. Seife, “NSF Stunned by Higher Costs of Proposed DOE Facility,” Science, vol. 307, 2005.
    [36] C. A. W. Jr. and S. Collaboration, “The Beam‐Beam Counter: A Local Polarimeter at STAR,” AIP Conference Proceedings, vol. 980, 2008.
    [37] W. Llope et al., “The STAR Vertex Position Detector,” Nucl. Instrum. Meth. A, vol. 759, 2014.
    [38] M. Anderson et al., “The STAR time projection chamber: a unique tool for studying high multiplicity events at RHIC,” Nucl. Instrum. Meth. A, vol. 499, no. 2-3, pp. 659–678, 2003.
    [39] F. Bergsma et al., “The STAR detector magnet subsystem,” Nucl. Instrum. Meth. A, vol. 499, 2003.
    [40] Y. Wang, Q. Zhang, D. Han, F. Wang, Y. Yu, P. Lyu, and Y. Li, “Status of technology of MRPC time of flight system,” JINST, vol. 14, 2019.
    [41] M. Beddo et al., “The STAR Barrel Electromagnetic Calorimeter,” Nucl.Instrum.Meth.A, no. 499, pp. 725–739, 2003.
    [42] C. Allgower et al., “The STAR endcap electromagnetic calorimeter,” Nucl.Instrum.Meth.A, no. 499, pp. 740–750, 2002.
    [43] L. Ruan, G. Lin, Z. Xu, K. Asselta, H. Chen et al., “Perspectives of a mid-rapidity dimuon program at the RHIC: a novel and compact muon telescope detector,” Journal of Physics G: Nuclear and Particle Physics, vol. 36, no. 9, 2009.
    [44] M. Williams, “Particle identification using time of flight,” Journal of Physics G: Nuclear and Particle Physics, vol. 39, no. 12, 2012.
    [45] “The STAR Barrel Electromagnetic Calorimeter,” https://drupal.star.bnl.gov/STAR/subsys/bemc.
    [46] S. Chatrchyan et al., “Measurement of the elliptic anisotropy of charged particles produced in PbPb collisions at √sNN = 2.76TeV ,” Phys. Rev. C, vol. 87, no. 1, 2013.
    [47] J.-Y. Ollitrault, “Anisotropy as a signature of transverse collective flow,” Phys. Rev. D, vol. 46, pp. 229–245, 1992.
    [48] J. Barrette et al., “Energy and charged particle flow in 10.8A GeV/c Au+Au collisions,” Phys. Rev. C, vol. 55, no. 3, 1997.
    [49] ——, “Proton and pion production relative to the reaction plane in Au+Au collisions at 11A GeV/c,” Phys. Rev. C, vol. 56, no. 6, 1997.
    [50] P. Tribedy, “Status of CME Search Before Isobar Collisions and Methods of Blind Analysis From STAR,” J. Phys. Conf. Ser., vol. 1602, 2020.
    [51] M. S. Abdallah et al., “Search for the Chiral Magnetic Effect with Isobar Collisions at √sNN = 200 GeV by the STAR Collaboration at RHIC,” arXiv:2109.00131 [nucl-ex], 2021.
    [52] B. Abelev et al., “J/ψ polarization in pp collisions at √s = 7 TeV,” Phys. Rev. Lett., vol. 108, 2012.
    [53] G. Aad et al., “Measurement of the differential cross-sections of inclusive, prompt and non-prompt J/ψ production in proton–proton collisions at √s = 7 TeV,” Nucl. Phys. B, vol. 850, pp. 387–444, 2011.
    [54] S. Das, “A simple alternative to the Crystal Ball function,” arXiv preprint hep-ex.CO/1603.08591v1, 2016.
    [55] P. Wang, “Analysis Note: Υ measurements in Au+Au collisions at √sNN = 200 GeV via the dimuon decay channel at STAR,” https://drupal.star.bnl.gov/STAR/system/files/AuAu200_Upsion_Dimuon_Ana_note_HFv1.0_0.pdf.
    [56] C. Adler et al., “Elliptic flow from two- and four-particle correlations in Au+Au collisions at √sNN = 130 GeV,” Phys. Rev. C, vol. 66, 2002.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE