簡易檢索 / 詳目顯示

研究生: 許新村
Hsu, Hsin-Tsun
論文名稱: 雷射清除法之表面波機制研究
Study of the mechanism of the surface waves in laser cleaning
指導教授: 林震銘
Lin, Jehn-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 83
中文關鍵詞: 雷射清除法表面波
外文關鍵詞: surface wave, laser cleaning
相關次數: 點閱:63下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文的目的是探討短脈衝雷射引發表面波而達到微粒移除的作用機制,分別對微粒與基質表面的黏著力與表面波所產生的清除力進行分析,建立雷射產生表面波移除微粒的物理模型,以預測雷射清除法之移除區域。本研究使用Excimer雷射,加熱於均勻塗佈銅微粒(<45μm)之不鏽鋼試件上,使試件產生表面波達到銅微粒移除的效果。在有限元素分析時,考慮隨時間變化之均勻分佈熱源照射於具熱彈性行為的材料表面,以熱機非耦合(Uncoupled thermal-mechanical analysis)的模式來計算雷射所引發之表面波之位移與加速度,且分別針對雷射能量及光徑大小等製程參數進行討論,並規劃一系列加工實驗與計算結果比較。
    研究結果顯示,表面波移除效果在光點以外區域隨著雷射能量的增加而增加,而加速度隨雷射光點增加而減小

    The object of this thesis is to study the surface wave mechanism in laser cleaning. A mathematical model for laser cleaning processes was established for a flat plate to remove micro-particles from surfaces by taking the adhesion forces into account.

    Excimer laser with a pulse duration of 30 ns was used as a pulsed energy source to generate surface wave on 304 stainless steel plates to remove copper particles in this study. In the analysis of the surface wave problem of the stainless steel plates, the propagation of the thermal stress wave was simulated numerically. The non-linear finite element method software, ABAQUS, was used to simulate the stress wave problem for an uncoupled thermal-mechanical system in two-dimensional domain. The temperatures, displacement and acceleration during the laser cleaning process were calculated. The process parameters affecting the cleaning efficiency were also investigated.

    It was shown that the cleaning area increased with the laser energy, which led to surface waves with large values of acceleration in the vertical direction, but the effective cleaning area decreased with increasing the laser spot size.

    中文摘要................................................ Ⅰ 英文摘要................................................ Ⅱ 誌謝.................................................... Ⅲ 目錄.................................................... Ⅳ 表目錄.................................................. Ⅶ 圖目錄.................................................. Ⅷ 符號說明................................................ XI 第一章 緒論............................................. 1 1.1 研究背景及目的.................................... 1 1.2 文獻回顧.......................................... 2 1.3 本文架構.......................................... 6 第二章 物理模型與數值分析理論........................... 8 2.1 表面聲波概論...................................... 8 2.2 表面波的數學理論.................................. 10 2.3 表面清除物理模型.................................. 15 2.3.1 表面黏著力.................................... 15 2.3.2 表面清除力.................................... 17 2.4 有限元素分析理論.................................. 20 2.4.1 熱傳模式...................................... 20 2.4.1.1 基本假設.................................. 20 2.4.1.2 熱傳能量平衡方程.......................... 20 2.4.1.3 有限元素程式化............................ 22 2.4.2 力學模式...................................... 23 2.4.2.1 基本假設.................................. 23 2.4.2.2 應力應變增量關係.......................... 24 2.4.2.2.1 彈性應變增量.......................... 24 2.4.2.2.2 熱應變增量............................ 25 2.4.2.3 運動方程式................................ 25 2.4.2.4 有限元素程式化............................ 27 2.5分析軟體簡介....................................... 30 第三章 有限元素分析..................................... 32 3.1 ABAQUS對既有範例之驗證............................ 32 3.2 試件幾何尺寸與有限元素模型........................ 35 3.3 材料性質.......................................... 36 3.4 入熱條件.......................................... 38 3.5 初始條件與邊界條件................................ 39 3.6 分析過程.......................................... 41 3.7 數值結果.......................................... 42 3.7.1網格取法與溫度分布............................. 42 3.7.2厚度效應的影響................................. 45 3.7.3幾何衰減與阻尼效應的影響....................... 47 3.7.4加速度分析..................................... 52 3.8 參數分析與討論.................................... 56 第四章 表面微粒清除試驗................................. 63 4.1 實驗配置與步驟.................................... 63 4.2 實驗結果與討論.................................... 66 4.3 實驗與數值模擬結果比較............................ 73 第五章 綜合討論與建議................................... 75 5.1綜合討論........................................... 75 5.2相關建議與未來發展................................. 76 參考文獻................................................ 78 附錄A................................................... 81 附錄B................................................... 82 自述.................................................... 83

    [1]Imen K., Lee S. J., Allen S. D., Laser-assisted micron scale particle
    removal, Appl. Phys. Lett.,Vol. 58,No. 2, pp.203-205, 1991.
    [2]Zapka W., Ziemlich W., Tam A. C., Efficient pulsed laser removal of 0.2μm
    sized particle from a solid surface, Appl. Phys. Lett., Vol. 58,No. 20 ,
    pp.2217-2219, 1991.
    [3]Tam A.C., Leung W. P., Zapka W., Ziemlich W., Laser-cleaning techniques for
    removal of surface particulates, Journal of Applied Physics, Vol. 71, pp.
    3515-3523, 1992.
    [4]Imen K., Lee S. J., Allen S. D., Shock wave analysis of laser assisted
    particle removal, Journal of Applied Physics, Vol. 74,No. 12, pp.7044-7047,
    1993.
    [5]Kelley J. D., Hovis F. E., A thermal detachment mechanism for particle
    removal from surfaces by pulsed laser irradiation, Microelectronic
    Engineering, Vol. 20, pp.159-170, 1993.
    [6]Lu Y. F., Song W. D., Ye K. D., Lee Y. P., A cleaning model for removal of
    particles due to laser-induced thermal expansion of substrate, Jpn. J. Appl.
    Phys., Vol. 36, pp.1304-1306, 1997.
    [7]Lu Y. F., Song W. D., Ang B. W., Hong M. H., Chan D. S. H., Low T. S., A
    theoretical model for laser removal of particles from solid surfaces,
    Applied Physics A, Vol. 65, pp.9-13, 1997.
    [8]Kolomenskii A. A., Schuessler H. A., Mikhalevich V. G., Maznev A. A.,
    Interaction of laser-generated surface acoustic pulses with fine particles:
    Surface cleaning and adhsion studies, Journal of Applied Physics Vol. 84,
    pp.2404-2410, 1998.
    [9]Lee J. M., Curran C., Watkins K. G., Laser removal of copper particles from
    silicon wafers using UV, visible and IR radiation, Applied Physics A, Vol.
    73, pp.219-224, 2001.
    [10]Curran C., Watkins K. G., Lee J. M., Shock pressure measurements for
    removal of particles of sub-micron dimensions from silicon wafers,"ICALEO’
    2002, Laser Microfabrication, Section D.
    [11]Lee J. M., Cho S. H., Park J. G., Lee S. H., Kang Y. J., Han Y. P., Kim S.
    Y., Laser induced shock cleaning of silicon wafers, ” ICALEO’ 2002, Laser
    Microfabrication, Section D.
    [12]Rayleigh L., On waves propagating along the plane surface of an elastic
    solid, Proc. London Math. Soc., Vol.17, pp.4-11, 1885.
    [13]Graff K. F., Wave Motion in Elastic Solids, Dover, New York, pp.355-356,
    1975.
    [14]Viktorov I. A., Rayleigh and Lamb Waves, Plenum Press, New York, 1967.
    [15]Miklowitz J., The Theory of Elastic Waves and Waveguides, Elsevier North-
    Holland, New York, 1978.
    [16]Bowling R. A., A theoretical review of particle adhesion, Particles on
    Surface 1: Detection, Adhesion, and Removal, editor: Mittal K. L., pp.129-
    142, 1988.
    [17]Osborne-Lee I. W., Calculation of Hamaker coefficients for metallic
    aerosols from extensive optical data, Particles on Surface 1: Detection,
    Adhesion, and Removal, editor: Mittal K. L., pp.77-90, 1988.
    [18]Ranade M. B., Adhesin and removal of particles: effect of medium, Particles
    on Surface 1: Detection, Adhesion, and Removal, editor: Mittal K. L.,
    pp.179-191, 1988.
    [19]Scruby C. B., Drain L. E., Laser Ultrasonics: Techniques and Applications,
    Adam Hilger, New York, pp.223-242, 301-302, 1990.
    [20]Scruby C. B., Moss B. C., The launching of layleigh waves from surface
    point sources, Rayleigh Wave Theory and Application, editors: Ash E. A.
    and Paige E. G. S., pp.102-109, 1985.
    [21]Scala C. M., Doyle P. A., Time- and frequency-domain characteristic of
    laser-generated ultrasonic surface waves, J. Acoust. Soc. Am., Vol. 85,No.
    4, pp.1569-1576, 1989.
    [22]ABAQUS Theory Manual, H.K.S. Inc., Pawtuckett, RI, 1998.
    [23]Kogawa H., Futakawa M., Isikura S., Kikuchi K., Hino R., and Eto M.,
    Inertia effect on thermal shock by laser beam shot, International Journal
    of Impact Engineering, Vol. 25, pp17-28, 2001
    [24]Hsu R. T., The Finite Element Method in Thermomechanics, Allen & Unwin,
    pp.152-156, 1986.
    [25]Getting Started with ABAQUS/Explicit, H.K.S. Inc., Pawtuckett, RI, 1998.
    [26]Getting Started with ABAQUS/Standard, H.K.S. Inc., Pawtuckett, RI, 1998.
    [27]Bathe K. J., Finite Element Procedures in Engineering Analysis, Prentice-
    Hall, New Jersey, pp.120-126, 1982.
    [28]ABAQUS User’s Manual Volume Ⅱ, H.K.S. Inc., Pawtuckett, RI, 1998.
    [29]Peckner D. and Bernstein I. M., Handbook of Stainless Steels, McGraw-Hill,
    pp.19-3, 1977.
    [30]Lee J. H. and Burger C. P., Finite element modeling of laser generation
    lamb waves, Computers & Structures. Vol. 54,No. 3, pp.499-514, 1995.
    [31]Ready J. F., Industrial Applications of Lasers, Academic Press, New York,
    pp.338-343, 1978.
    [32]洪志憲, 運用網格重建技術於大型結構焊接之研究, 成功大學機械工程研究所碩士論
    文, 1995.
    [33]Ready J. F., Effects of High-Power Laser Radiation, Academic Press, New
    York, pp.70-74, 1971.
    [34]Bachmann H. ET AL., Vibration Problems in Structures, Birkhauser Verlag,
    Boston, pp.166, 175-176, 1995.
    [35]胡哲彰, 聚合物之準分子雷射燒蝕與微鑽孔, 成功大學機械工程研究所碩士論文,
    2002.

    下載圖示 校內:2013-07-14公開
    校外:2013-07-14公開
    QR CODE