簡易檢索 / 詳目顯示

研究生: 吳乃芸
Wu, Nai-Yun
論文名稱: 以海霸桌遊實現實體互動之運算思維課程
Enhancing Coding Ocean Board Game to Implement Tangible Interaction in Computational Thinking Course
指導教授: 黃悅民
Huang, Yueh-Min
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系碩士在職專班
Department of Engineering Science (on the job class)
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 70
中文關鍵詞: 運算思維桌遊實體互動ArUco Marker
外文關鍵詞: Computational Thinking, Board Game, Tangible Interaction, ArUco Marker
相關次數: 點閱:174下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 運算思維是為二十一世紀人類所應具備的能力,世界各國的教育機構在調整教 育政策上,開始將其整合至電腦科學、核心概念和技能發展等相關課程中,此舉除 了能培養運算思維能力,亦能增強學生的邏輯與編譯能力。基本上,培育運算思維 的課程,可區分為不插電課程、插電課程以及混合課程;回顧過往的研究發現,多 數研究引入不同種類的遊戲於運算思維課程活動,特別是 K-3 至 K-6 的運算思維課 程,藉此來增進他們的學習動機與興趣。然而,不插電的遊戲課程會因規則判斷的 錯誤而造成學習者在概念的迷失、遊戲卡關等情形;而插電的遊戲課程則缺乏了與 同儕面對面的交流與實際體驗的機會。
    根據 Piaget 的認知發展理論,7 至 11 歲的國小學童係落在具體運思期階段,他 們能將邏輯思考的歷程應用於解決具體事物或與事件有關的問題,因此令學習者能 充份地接觸實體物件並進行學習,則對其學習與認知發展能有所助益;此外,結合 有形物件與數位資訊的實體互動對其學習亦有正面的影響。因此,結合有形物件的 桌遊與卡牌,以及數位化系統輔助的實體互動,除了有助於令學習者感受到課程是 好玩且易學的,亦能經由數位化介面理解程式前後的關聯與運作,並充份地運用自 身的運算思維概念來解決活動任務。
    有鑑於此,本研究旨在開發一款 ArUco Marker 海霸桌遊系統,讓學生經由桌遊與 數位化系統進行實體互動,並引導學生使用運算思維概念來學習程式設計。實驗對 象以國小四年級學生為主,探討學生參與課程活動的學習體驗與運算思維使用頻率,以 及他們的課後感受;研究結果顯示,高成就學生在外在動機與愉悅性方面顯著高於低成 就學生,而在參與課程後使用運算思維頻率,高、中成就學生亦顯著高於低成就學生。 因此,本研究所開發之 ArUco Marker 海霸桌遊系統是具有互動性、易理解性、好玩 性,可以讓學生愉悅地學習程式,並運用運算思維能力來解決問題。

    Computational Thinking(CT) is a capability in the 21st century. Educational institutions around the world are adjusting their educational policies and beginning to integrate it into courses, including plugged and unplugged course, for training students’ CT and enhancing their logic and compilation ability. Most of the studies used different games in CT activities, especially K-3 to K-6, to enhance their motivation and interest in learning. However, the unplugged courses might cause learners to lose the concepts or get stuck due to the wrong judgment of the rules; plug-in courses lack the opportunity for face-to-face communication and experience with peers. Therefore, the study aims to develop a system of ArUco Marker Coding Ocean board game, which allows students to physically interact with digital systems through tangible interaction, and lead students to use the concepts of CT to learn programming. This study takes fourth-grade students of elementary school, to explore the students' learning experience and frequency of using CT in the course, as well as their feelings after the course; the research results show that high-achievement students have significantly higher extrinsic motivation and pleasure than low-achievement students. High- achievement students and the frequency of using CT after participating in the course, high- achievement and middle-achievement students are also significantly higher than low- achieving students. Consequently, the ArUco Marker Coding Ocean board game system is interactive, easy to understand, and fun, allowing students to learn programs happily and use CT skills to solve problems.

    摘要 I Abstract II 致謝 IX 目錄 X 表目錄 XII 圖目錄 XIII 壹、前言 1 1.1 研究背景 1 1.2 研究動機 3 1.3 研究問題與目的 5 貳、 文獻探討 6 2.1 運算思維 6 2.1.1 運算思維的定義 6 2.1.2 運算思維的發展現況 9 2.1.3 運算思維於插電與不插電課程 10 2.2 桌上遊戲 13 2.2.1 海霸桌遊 14 2.3 實體互動 18 2.3.1 實體互動的定義 18 2.3.2 實體互動介面的應用 20 2.4 運算思維結合實體互動之案例探討 23 參、 研究方法 25 3.1 實驗對象 25 3.2 實驗設計 26 3.2.1 實驗流程 26 3.2.2 實驗活動 29 3.3 ArUco Marker 海霸桌遊系統 33 3.3.1 ArUco Marker 33 3.3.2 系統介紹 35 3.4 研究工具 40 3.4.1 學習策略動機量表 40 3.4.2 學習焦慮量表 40 3.4.3 學習信心量表 40 3.4.4 愉悅性 41 3.4.5 運算思維使用頻率量表 41 3.5 個別訪談 41 3.6 資料分析 42 肆、 研究結果 43 4.1 ArUco Marker 海霸桌遊課程之答題狀況 43 4.2 ArUco Marker 海霸桌遊課程之學習體驗 45 4.2.1 學習動機 46 4.2.2 學習焦慮 47 4.2.3 學習信心 48 4.2.4 愉悅性 49 4.2.5 運算思維使用頻率 49 4.3 個別訪談 50 伍、 討論與結論 54 參考文獻 57 附錄 64 附錄一、課前問卷 64 附錄二、課後問卷 67

    林育慈與吳正己(民105)。運算思維與中小學資訊科技課程。教育脈動,6,5-20。
    教育部(民106)。十二年國民基本教育課程綱要國民中學暨普通型高級中等學校-科技領域。取自:https://www.naer.edu.tw/
    程式老爹-Papacode(民2014)。海霸桌遊。取自:http://www.papacode.com.tw/
    黃蕙蘭、黃思華與黃健哲(民109)。國小一年級學童實施不插電運算思維課程之成效分析。台灣教育,722,59-70。取自: https://www.AiritiLibrary.com/Publication/Index/18166482-202004-202004170008-202004170008-59-70
    臺北市政府教育局(民107)。北市強調運算思維從小扎根,自訂國小資訊科技教學綱要修正版近日上路。取自: https://www.doe.gov.taipei/News_Content.aspx?n=0F560782595DACFC&s=3849448A49BA29BE
    ACARA. (2013). General capabilities in the Australian curriculum. Retrieved from https://www.acara.edu.au/
    Aho, A. V. (2012). Computation and Computational Thinking. The Computer Journal, 55(7), 832-835. doi:10.1093/comjnl/bxs074
    Almukadi, W., Aljojo, N., & Munshi, A. (2019). The Use of Tangible User Interface in Interactive System to Learn about Countries. 2019, 14(04), 9. doi:10.3991/ijet.v14i04.9341
    Armoni, M. (2012). Teaching CS in kindergarten: how early can the pipeline begin? ACM Inroads, 3(4), 18–19. doi:10.1145/2381083.2381091
    Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: what is Involved and what is the role of the computer science education community? ACM Inroads, 2. doi:10.1145/1929887.1929905
    Barradas, R., Lencastre, J. A., Soares, S., & Valente, A. (2020). Developing computational thinking in early ages: a review of the code.org Platform. Retrieved from http://hdl.handle.net/1822/65432
    Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Computational thinking and tinkering: Exploration of an early childhood robotics curriculum. Computers & Education, 72, 145-157. doi:https://doi.org/10.1016/j.compedu.2013.10.020
    Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., & Engelhardt, K. (2016). Developing Computational Thinking in Compulsory Education. Implications for policy and practice. EUR - Scientific and Technical Research Reports. doi:10.2791/792158
    Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of computational thinking. Paper presented at annual American Educational Research Association meeting, Vancouver, BC, Canada.
    Brock, A. (2017). Tangible Interaction for Visually Impaired People: why and how. Paper presented at the World Haptics Conference - Workshop on Haptic Interfaces for Accessibility, Fuerstenfeldbruck, Germany. https://hal.inria.fr/hal-01523745
    CAS. (2016). Computational Thinking Concepts and Approaches. Retrieved from https://www.barefootcomputing.org/concept-approaches/computational-thinking-concepts-and-approaches
    Chen, K.-Z., & Chi, H.-H. (2020). Novice young board-game players’ experience about computational thinking. Interactive Learning Environments, 1-13. doi:10.1080/10494820.2020.1722712
    CSTA. (2017). About the CSTA K-12 computer science standards. Retrieved from https://www.csteachers.org/page/standards/
    CSTA, & ISTE. (2011). Operational Definition of Computational Thinking.
    del Olmo-Muñoz, J., Cózar-Gutiérrez, R., & González-Calero, J. A. (2020). Computational thinking through unplugged activities in early years of Primary Education. Computers & Education, 150. doi:10.1016/j.compedu.2020.103832
    Department for Education, U. (2013). National curriculum in England: computing programmes of study. Retrieved from https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study/national-curriculum-in-england-computing-programmes-of-study
    Fjællingsdal, K. S., & Klöckner, C. A. (2020). Green Across the Board: Board Games as Tools for Dialogue and Simplified Environmental Communication. Simulation & Gaming, 51(5), 632-652. doi:10.1177/1046878120925133
    Garcia-Sanjuan, F., Jurdi, S., Jaen, J., & Nacher, V. (2018). Evaluating a tactile and a tangible multi-tablet gamified quiz system for collaborative learning in primary education. Computers & Education, 123, 65-84. doi:10.1016/j.compedu.2018.04.011
    Garneli, V., & Chorianopoulos, K. (2017). Programming video games and simulations in science education: exploring computational thinking through code analysis. Interactive Learning Environments, 26(3), 386-401. doi:10.1080/10494820.2017.1337036
    George, D., & Mallery, P. (2003). SPSS for windows step by step: A simple guide and reference. (4th ed.): Allyn & Bacon, Inc.
    Google. (2015). Exploring Computational Thinking. Retrieved from https://edu.google.com/resources/programs/exploring-computational-thinking/#!ct-overview
    Goyal, S., Vijay, R. S., Monga, C., & Kalita, P. (2016). Code Bits: An Inexpensive Tangible Computational Thinking Toolkit For K-12 Curriculum. Paper presented at the Proceedings of the TEI '16: Tenth International Conference on Tangible, Embedded, and Embodied Interaction, Eindhoven, Netherlands. https://doi.org/10.1145/2839462.2856541
    Hagenauer, G., & Hascher, T. (2014). Early Adolescents’ Enjoyment Experienced in Learning Situations at School and Its Relation to Student Achievement. 2014, 2(2), 11. doi:10.11114/jets.v2i2.254
    Hooshyar, D., Pedaste, M., Yang, Y., Malva, L., Hwang, G.-J., Wang, M., . . . Delev, D. (2020). From Gaming to Computational Thinking: An Adaptive Educational Computer Game-Based Learning Approach. Journal of Educational Computing Research, 59(3), 383-409. doi:10.1177/0735633120965919
    Hooshyar, D., Pedaste, M., Yang, Y., Malva, L., Hwang, G.-J., Wang, M., . . . Delev, D. (2021). From Gaming to Computational Thinking: An Adaptive Educational Computer Game-Based Learning Approach. Journal of Educational Computing Research, 59(3), 383-409. doi:10.1177/0735633120965919
    Hornecker, E. (2020). Tangible Interaction. Retrieved from https://www.interaction-design.org/literature/book/the-glossary-of-human-computer-interaction/tangible-interaction
    Hornecker, E., & Buur, J. (2006). Getting a grip on tangible interaction: a framework on physical space and social interaction. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 437–446): Association for Computing Machinery.
    Hsu, C.-L., & Lin, J. C.-C. (2008). Acceptance of blog usage: The roles of technology acceptance, social influence and knowledge sharing motivation. Information & Management, 45(1), 65-74. doi:https://doi.org/10.1016/j.im.2007.11.001
    Hsu, T.-C., & Liang, Y.-S. (2021). Simultaneously Improving Computational Thinking and Foreign Language Learning: Interdisciplinary Media With Plugged and Unplugged Approaches. Journal of Educational Computing Research, 59(6), 1184-1207. doi:10.1177/0735633121992480
    Ishii, H., & Ullmer, B. (1997). Tangible bits: towards seamless interfaces between people, bits and atoms. Paper presented at the Proceedings of the ACM SIGCHI Conference on Human factors in computing systems, Atlanta, Georgia, USA. https://doi.org/10.1145/258549.258715
    jamovi. (2021). The jamovi project (Version 1.6). Retrieved from https://www.jamovi.org.
    Kalelioğlu, F. (2015). A new way of teaching programming skills to K-12 students: Code.org. Computers in human behavior, 52, 200-210. doi:https://doi.org/10.1016/j.chb.2015.05.047
    Kosa, M., & Spronck, P. (2018). What tabletop players think about augmented tabletop games: a content analysis. Paper presented at the Proceedings of the 13th International Conference on the Foundations of Digital Games, Malmö, Sweden. https://doi.org/10.1145/3235765.3235782
    Kuo, W.-C., & Hsu, T.-C. (2019). Learning Computational Thinking Without a Computer: How Computational Participation Happens in a Computational Thinking Board Game. The Asia-Pacific Education Researcher, 29(1), 67-83. doi:10.1007/s40299-019-00479-9
    Lee, E., Kafai, Y. B., Vasudevan, V., & Davis, R. L. (2014). Playing in the arcade: Designing tangible interfaces with MaKey MaKey for Scratch games. In Playful user interfaces (pp. 277-292): Springer.
    Lee, V. R., & Recker, M. (2018). Paper Circuits: A Tangible, Low Threshold, Low Cost Entry to Computational Thinking. TechTrends, 62(2), 197-203. doi:10.1007/s11528-017-0248-3
    Levine, T., & Donitsa-Schmidt, S. (1998). Computer use, confidence, attitudes, and knowledge: A causal analysis. Computers in human behavior, 14(1), 125-146.
    Lin, H.-C. K., Lin, Y.-H., Wang, T.-H., Su, L.-K., & Huang, Y.-M. (2021). Effects of Incorporating Augmented Reality into a Board Game for High School Students’ Learning Motivation and Acceptance in Health Education. Sustainability, 13(6), 3333. Retrieved from https://www.mdpi.com/2071-1050/13/6/3333
    Luo, F., Antonenko, P. D., & Davis, E. C. (2020). Exploring the evolution of two girls’ conceptions and practices in computational thinking in science. Computers & Education, 146. doi:10.1016/j.compedu.2019.103759
    Marshall, P. (2007). Do tangible interfaces enhance learning? Paper presented at the Proceedings of the 1st international conference on Tangible and embedded interaction, Baton Rouge, Louisiana. https://doi.org/10.1145/1226969.1227004
    Marshall, P., Rogers, Y., & Hornecker, E. (2007). Are tangible interfaces really any better than other kinds of interfaces? Paper presented at the CHI'07 workshop on Tangible User Interfaces in Context & Theory, San Jose, California, USA. http://oro.open.ac.uk/19535/
    Ministry of Education, N. Z. (2017). The New Zealand Curriculum Online: Technology. Retrieved from http://nzcurriculum.tki.org.nz/The-New-Zealand-Curriculum/Technology
    MOE. (2017). O-Level Computing Teaching and Learning Syllabus. Retrieved from https://www.moe.gov.sg/secondary/courses/express/electives#subjects
    Open CV. (2021). Detection of ArUco Markers. Retrieved from https://docs.opencv.org/4.x/d5/dae/tutorial_aruco_detection.html
    Papert, S. (1980). Mindstorms: children, computers, and powerful ideas: Basic Books, Inc.
    Parhiala, P., Torppa, M., Vasalampi, K., Eklund, K., Poikkeus, A.-M., & Aro, T. (2018). Profiles of school motivation and emotional well-being among adolescents: Associations with math and reading performance. Learning and Individual Differences, 61, 196-204. doi:https://doi.org/10.1016/j.lindif.2017.12.003
    Pila, S., Aladé, F., Sheehan, K. J., Lauricella, A. R., & Wartella, E. A. (2019). Learning to code via tablet applications: An evaluation of Daisy the Dinosaur and Kodable as learning tools for young children. Computers & Education, 128, 52-62. doi:10.1016/j.compedu.2018.09.006
    Pintrich, P. R. (1991). A manual for the use of the Motivated Strategies for Learning Questionnaire (MSLQ).
    Price, S., Rogers, Y., Scaife, M., Stanton, D., & Neale, H. (2003). Using ‘tangibles’ to promote novel forms of playful learning. Interacting with Computers, 15(2), 169-185. doi:10.1016/s0953-5438(03)00006-7
    Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., . . . Silverman, B. (2009). Scratch: programming for all. Communications of the ACM, 52(11), 60-67.
    Rodríguez-Martínez, J. A., González-Calero, J. A., & Sáez-López, J. M. (2020). Computational thinking and mathematics using Scratch: an experiment with sixth-grade students. Interactive Learning Environments, 28(3), 316-327. doi:10.1080/10494820.2019.1612448
    Saxena, A., Lo, C. K., Hew, K. F., & Wong, G. K. W. (2020). Designing Unplugged and Plugged Activities to Cultivate Computational Thinking: An Exploratory Study in Early Childhood Education. The Asia-Pacific Education Researcher, 29(1), 55-66. doi:10.1007/s40299-019-00478-w
    Schneider, B., Jermann, P., Zufferey, G., & Dillenbourg, P. (2011). Benefits of a Tangible Interface for Collaborative Learning and Interaction. IEEE Transactions on Learning Technologies, 4(3), 222-232. doi:10.1109/TLT.2010.36
    Selby, C., & Woollard, J. (2013). Computational thinking: the developing definition. Retrieved from https://eprints.soton.ac.uk/356481/
    Shaer, O., & Hornecker, E. (2010). Tangible User Interfaces: Past, Present, and Future Directions. Foundations and Trends® in Human–Computer Interaction, 3(1–2), 4-137. doi:10.1561/1100000026
    Sharma, K., Papavlasopoulou, S., & Giannakos, M. (2019). Coding games and robots to enhance computational thinking: How collaboration and engagement moderate children’s attitudes? International Journal of Child-Computer Interaction, 21, 65-76. doi:https://doi.org/10.1016/j.ijcci.2019.04.004
    Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational Research Review, 22, 142-158. doi:10.1016/j.edurev.2017.09.003
    Sigelman, C. K., & Rider, E. A. (2012). Life-span human development. Australia; Belmont, CA: Wadsworth, Cengage Learning.
    SMITH, M. (2016). Computer Science For All. Retrieved from https://obamawhitehouse.archives.gov/blog/2016/01/30/computer-science-all
    So, H.-J., Jong, M. S.-Y., & Liu, C.-C. (2020). Computational Thinking Education in the Asian Pacific Region. The Asia-Pacific Education Researcher, 29(1), 1-8. doi:10.1007/s40299-019-00494-w
    Soleimani, A., Herro, D., & Green, K. E. (2019). CyberPLAYce—A tangible, interactive learning tool fostering children’s computational thinking through storytelling. International Journal of Child-Computer Interaction, 20, 9-23. doi:https://doi.org/10.1016/j.ijcci.2019.01.002
    Sousa, M., & Bernardo, E. (2019, 2019//). Back in the Game. Paper presented at the Videogame Sciences and Arts, Cham.
    Tangible Media Group. (2013). The vision of Tangible Bits & Radical Atoms. Retrieved from https://tangible.media.mit.edu/
    Trilles, S., & Granell, C. (2020). Advancing preuniversity students' computational thinking skills through an educational project based on tangible elements and virtual block-based programming. Computer Applications in Engineering Education, 28(6), 1490-1502. doi:https://doi.org/10.1002/cae.22319
    Tsarava, K., Moeller, K., Pinkwart, N., Butz, M., Trautwein, U., & Ninaus, M. (2017). Training computational thinking: Game-based unplugged and plugged-in activities in primary school. Paper presented at the European conference on games based learning.
    Turchi, T., Fogli, D., & Malizia, A. (2019). Fostering computational thinking through collaborative game-based learning. Multimedia Tools and Applications, 78(10), 13649-13673. doi:10.1007/s11042-019-7229-9
    van Bruggen, J. M., Kirschner, P. A., & Jochems, W. (2002). External representation of argumentation in CSCL and the management of cognitive load. Learning and Instruction, 12(1), 121-138. doi:https://doi.org/10.1016/S0959-4752(01)00019-6
    Venkatesh, V. (2000). Determinants of perceived ease of use: Integrating control, intrinsic motivation, and emotion into the technology acceptance model. Information systems research, 11(4), 342-365.
    Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining Computational Thinking for Mathematics and Science Classrooms. Journal of Science Education and Technology, 25(1), 127-147. doi:10.1007/s10956-015-9581-5
    Wellner, P., Mackay, W., & Gold, R. (1993). Back to the real world. Communications of the ACM, 36(7), 24-26. doi:10.1145/159544.159555
    Wiki. (2021a). 桌上遊戲. Retrieved from https://zh.wikipedia.org/wiki/%E6%A1%8C%E4%B8%8A%E9%81%8A%E6%88%B2
    Wiki. (2021b). 認知發展論. Retrieved from https://zh.wikipedia.org/wiki/%E8%AA%8D%E7%9F%A5%E7%99%BC%E5%B1%95%E8%AB%96
    Wing. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35. doi:10.1145/1118178.1118215
    Wing. (2014). COMPUTATIONAL THINKING BENEFITS SOCIETY. Retrieved from http://socialissues.cs.toronto.edu/2014/01/computational-thinking/
    Wong, G. K. W., & Jiang, S. (2018, 4-7 Dec. 2018). Computational Thinking Education for Children: Algorithmic Thinking and Debugging. Paper presented at the 2018 IEEE International Conference on Teaching, Assessment, and Learning for Engineering (TALE).
    Yin, Y., Hadad, R., Tang, X., & Lin, Q. (2019). Improving and Assessing Computational Thinking in Maker Activities: the Integration with Physics and Engineering Learning. Journal of Science Education and Technology, 1-26.
    Zaman, B., Vanden Abeele, V., Markopoulos, P., & Marshall, P. (2011). Editorial: the evolving field of tangible interaction for children: the challenge of empirical validation. Personal and Ubiquitous Computing, 16(4), 367-378. doi:10.1007/s00779-011-0409-x

    無法下載圖示 校內:2027-01-24公開
    校外:2027-01-24公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE