簡易檢索 / 詳目顯示

研究生: 周文珺
Chou, Wen-Jyun
論文名稱: 高科技廠房懸吊搬運系統耐震能力研究
A Study on Seismic Capacity of Overhead Transportation Systems in A High-tech Fab
指導教授: 姚昭智
Yao, George C.
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 建築學系
Department of Architecture
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 158
中文關鍵詞: 自動化物料輸送系統足尺靜態往復實驗非線性静力側推分析
外文關鍵詞: Automated material handling system, full-scale static cyclic loading tests, nonlinear static pushover analysis
相關次數: 點閱:200下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣高科技廠房為了安全與效率,以及工廠佈置的空間考量,懸吊式的自動物料搬運系統已成為必備的搬運系統,除了設備購置的成本之外,對地震造成損壞的潛在風險也會納入成本評估。
    本研究以塵室懸吊方式之搬運系統OHS(Overhead System)作為研究對象,透過足尺實驗,進行靜態往復試驗觀察在不同位移階段的破壞強度及破壞方式,並提供相對應的元件補強措施,補強後實驗結果可降低連結夾具鬆脫問題,可有效提升系統強度至主要結構強度。
    根據足尺實驗結果,再利用結構分析軟體SAP2000,建立一個和實驗相同之數值模型,並進行非線性静力側推分析。將分析結果與實驗結果進行比較,最後再根據電腦數值模型提出三種系統性補強建議,以適當的少量桿件配置可有效大幅提升系統強度。

    In Taiwan, the suspended automated material handling system (AMHS) has become an essential transportation facilities in high-tech factories, meeting the needs of safety, efficiency, and space saving. The cost evaluation for AMHS considers not only the initial purchase price of equipment but also the potential risk of earthquake damage.
    In this research, we studied a suspension overhead system (OHS) in the clean room. Through full-scale static cyclic loading tests, we observed the displacement fracture strength and failure modes at different stages, and provide reinforcing measures at different failed connection points. After installing reinforcements for the connections, the new
    cyclic loading test indicated an increased capacity and the loosening problems at connection points were reduced. As a result, the system strength has effectively improved to the designed structure strength.
    Using structural analysis software SAP2000 to build a simulated numerical model, the nonlinear static pushover analysis was performed. We then compared the analysis results to the full-scale experiment’s to understand the internal force distribution.
    Finally, the computer model analysis quantified three system retrofit proposals—effectively enhancing the system strength with the least number of members added.

    目錄 圖目錄 VIII 表目錄 XIII 第一章 緒論 1 1-1 研究動機與目的 1 1-2 研究內容 2 1-3 文獻回顧 5 第二章 懸吊運輸系統耐震試驗及分析方法 7 2-1 OHS系統簡介 7 2-2 背景理論推導 11 2-3 微振動量測 14 2-3-1 微振動基本理論 14 2-3-2 量測設備 15 2-4 阻尼比 16 2-5 實驗規劃與方法 19 2-5-1 實驗規劃 19 2-5-2 建築耐震法規 20 2-5-3 試體尺寸及動力性質 21 2-5-4 輸入波型之法規及數值 28 2-6 SAP2000電腦模型分析方法 30 2-5-5 SAP2000分析軟體簡介[33] 30 2-5-6 Pushover方法[34]、[35] 31 2-7 構件挫屈理論 32 2-7-1 歐拉彈性挫屈公式 32 2-7-2 變斷面桿之挫屈 35 第三章 足尺實驗過程與結果 39 3-1 試體說明與安裝過程 39 3-1-1 鋼構架和反力架 39 3-1-2 OHS試體 43 3-2 實驗結果與討論 47 3-2-1 現況耐震實驗 47 3-2-2 現況接頭耐震力提升 67 3-2-3 現況耐震元件補強實驗 74 第四章 電腦模擬模型分析與結果 91 4-1 模型預備參數 91 4-2 幾何模型 95 4-2-1 桿件繪製及設定 95 4-2-2 檢核反力及頻率 96 4-3 桿件非線性行為 99 4-3-1 桿件挫屈/降伏力計算 99 4-3-2 Tension/Compression設定 101 4-3-3 Hook設定 102 4-4 Pushover設定 104 4-5 分析結果比較 107 4-5-1 整體容量曲線比較 107 4-5-2 斜撐受力 108 4-5-3 垂直吊桿 110 4-6 系統補強 119 4-6-1 現有C型斜撐改良(補強1) 119 4-6-2 新增三分斜撐(補強2) 126 4-6-3 新增C型鋼斜撐(補強3) 133 4-6-4 補強綜合比較 138 第五章 結論與建議 141 5-1 結論 141 5-2 建議 143 參考文獻 145 附錄A 試體桿件及零件重量表 149 附錄B SAP2000 自重下各節點反力表 153 附錄C 各補強容量曲線之趨勢線公式 157

    [1]
    Powerchip, Retrieved 2013/05/30 , from http://www.psc.com.tw/
    [2]
    林皇銘,《12吋晶圓廠AMHS懸吊系統之強度分析》,國立中興大學機械工程學系碩士論文,台中,2007。
    [3]
    吳青陽,《次世代晶圓廠自動化物料搬運系統之懸吊系統分析與研究》,國立彰化師範大學機電工程學系碩士論文,彰化,2008。
    [4]
    李志強,《高科技設施的振動控制設計》,機械月刊,第十七卷,第五期,1991。
    [5]
    凃英烈,《以微振及地震紀錄資料比較分析建築物之動力特性》,國立成功
    大學建築研究所碩士論文,台南,1994。
    [6]
    全湘偉,邱垂鈺,《半導體廠房製程儀具基礎暨樓板結構振動反應分析模式之建立》,機械月刊,第二十三卷,第九期,pp.327-337,1997。
    [7]
    何有忠,《高科技產業微振干擾防制分析》,南科高鐵經過造成微振動問題會
    議,台南,1997。
    [8]
    郭柏辰,《高科技廠房之設備及管線振動量測系統》,國立臺灣大學工程科學及海洋工程學系碩士論文,台北,2008。
    [9]
    ATC-40, “Seismic evaluation and retrofit of concrete buildings”, Report No. SSC 96-01, Applied Technology Council, 1996.
    [10]
    CSI,Computers&Structures,Inc.,Retrieved 2013/03/30,from http://www.csiberkeley.com/index.html.
    [11]
    金文森、江岳錦、歐祐徳,《以鋼結構實例驗證SAP2000與ETABS側推分析之研究》,結構工程,中華民國結構工程學會,第26卷,第3期,pp. 47-72,2001。
    [12]
    Weaver,W, Jr., Timoshenko. S. P., Young. D. H., “Vibration Problems in Engineering”,PP 64, John Wiley & Sons,1990.
    [13]
    邱子銓,《建築物微振動衰減特性研究》,國立成功大學建築研究所碩士論文,2005。
    [14]
    Srinivasan,M.C., Kot .C.A., Hsieh. B.J,Dynamic Testing of As-Built Civil Engineering Structure - A Review and Evaluation.USA Nuclear Regulatory Comission,Washington,1984.
    [15]
    蔡益超、洪振銘,《台北市鋼筋混凝土高樓動力特性測析及應用》,國立台灣大學土木工程學系科學發展月刊,第八卷,第十二期,九月,pp.1097~1112,1980。
    [16]
    葉超雄、翁作新、杜振宗、羅俊雄,“台北市區微動顯著周期之量測與分析”,國立台灣大學地震工程研究中心,GEER,R70-1,六月,1981。
    146
    [17]
    清華大學土木工程學系,香港理工學院土木及結構工程系,《香港幾棟高層建築的脈動實驗》,清華大學出版社,1985。
    [18]
    Asmussen, J.C., Brincker, R. and Rytter, A., “Ambient modal testing of the Vestvej bridge using random decrement”, Proceedings of the International Modal Analysis Conference–IMAC 2, pp. 922-928, 1998.
    [19]
    Bao, Z.W. and Ko, J.M., “Determination of modal parameters of tall buildings with ambient vibration measurements”, International Journal of Analytical and Experimental Modal Analysis, 6(1), pp. 57-68, 1991.
    [20]
    Boroschek, R.L., Yanez, F.V., “Experiment verification of basic analytical ssumptions used in the analysis of structural wall buildings”, Engineering Structures, 22, pp. 657-669, 2000.
    [21]
    Celebi, M., “Comparison of Damping in buildings under low-amplitude and strong motions”, Journal of Wind Engineering and Industrial Aerodynamics, 59, pp. 309-323,1996.
    [22] Celebi, M., Liu, H.P., “Before and after retrofit – response of a building during ambient and strong motions”, Journal of Wind Engineering and Industrial Aerodynamics, 77&78, pp. 259-268, 1998.
    [23] Satake N. and Yokota, H., “Evaluation of vibration properties of high-rise steel buildings using data of vibration tests and earthquake observations”, Journal of Wind Engineering and Industrial Aerodynamics, 59(2-3), pp. 265-282, 1996.
    [24] Littler, J.D., “Ambient vibration tests on long span suspension bridges”, Journal of Wind Engineering and Industrial Aerodynamics, 42 (1-3), pp. 1359-1370, 1992.
    [25] Yamaguchi, H, Takano, H., Ogasawara, M., Shimosato, T., Kato, M., Okada, J., “Identification of dynamic chararistics of the Tsurumi Tsubasa bridge by field vibration tests”, Structural Engineering and Earthquake Engineering, 15, pp. 465-483, 1996.
    [26]
    Loh, C.H., Wu, T.S., “Identification of Fel-Tsui arch dam from both ambient and seismic response data”, Soil Dynamics and Earthquake Engineering, 15, pp. 465-483, 1996.
    [27] Bendat, J.S., Piersol, A.G., Random Data Analysis and Measurement Procedures, 2nd ED., John Wiley & Sons, New York, 1991.
    [28] 陳卓彥,《屋頂電信鐵塔之動力特性研究》,國立成功大學建築研究所碩士論
    147
    文,2004。
    [29]
    國家地震工程研究中心、國立成功大學,《科技廠房Stocker耐震性能測試》,高科技產業耐震設備前瞻技術計畫,編號301204402,行政院國家科學委員會中部科學工業園區管理局。
    [30]
    姚昭智,《建築模態分析講義》,國立成功大學建築研究所,2013。
    [31]
    內政部營建署編輯委員會,“建築物耐震設計規範及解說”,營建雜誌社,台北,2011。
    [32]
    FEMA 461,“Interim Testing Protocols for Determining the Seismic Performance Characteristics of Structural and Nonstructural Components”, Federal Emergency Management Agency , Washington, D.C., 2007.
    [33]
    SAP2000 Three Dimensional Static Dynamic Finite Element Analysis and Design of Structures Tutorial Manuals, Version 15.0.0, Computers and Structures, lnc., Berkeley, California, USA, 2011.
    [34]
    李森枏,SAP2000入門與工程上之應用,科技圖書公司,台北,2003。
    [35]
    劉一德,《混凝土結構之側推分析探討》,國立台北科技大學土木與防災研究所碩士論文,台北,2007。
    [36]
    鍾立來、葉勇凱、簡文郁、柴駿甫、蕭輔沛、沈文成、邱聰智、周德光、趙宜峰、楊耀昇、黃世建,《校舍結構耐震評估與補強技術手冊》,台北,國家地震工程研究中心報告,編號NCREE-08-023,2008
    [37]
    Timoshenko, S. P., and Gere, J. M., “Theory of elastic stability”, 2nd Ed., McGraw-Hill Book Co., Inc., New York, 1961.
    [38]
    Gere.James M., “Mechanics of Materials FIFTH EDITION”, Pacific Grove, C.A., 2001.
    [39]
    MTS, services/Manuals/ Actuators/Series 201, Retrieved 2013/05/30 from
    http://www.mts.com/ucm/groups/public/documents/library/mts_004929.pdf
    [40]
    經濟部標準檢驗局,《CNS 3934 B2143 螺栓、螺釘、螺樁之機械性質》,中華民國國家標準,2003。
    [41]
    經濟部標準檢驗局,《CNS 2111金屬材料拉伸試驗法》,中華民國國家標準,2008。
    [42]
    經濟部標準檢驗局,《CNS 8693 G3166低碳鋼線材》,中華民國國家標準,2004。

    下載圖示 校內:立即公開
    校外:2014-07-31公開
    QR CODE