| 研究生: |
日亞尼 Fitriyani, Sri |
|---|---|
| 論文名稱: |
機能性高分子的合成及在不對稱結構體誘導及致動器應用之研究 Study on the Synthesis and Application of Functional Polymers on Asymmetric Structure Induction and Actuator Fabrication |
| 指導教授: |
劉瑞祥
Liu, Jui-Hsiang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 150 |
| 中文關鍵詞: | 凝膠 、自組裝 、液晶彈性體 |
| 外文關鍵詞: | gel, self-assembly, liquid crystal elastomer |
| 相關次數: | 點閱:99 下載:18 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
近年來,功能性高分子逐漸成為可在現代技術中使用的新穎功能材料。為了完成特定的目標,功能材料的開發變得越來越重要。本研究探討功能性高分子聚合物的合成及其在不對稱結構誘導和致動器製造中的應用。這項研究工作包括以下部分。
第一部分:我們已成功合成一種掌性類固醇基化合物cholesteryl 4-(carbonyloxy) 4-(hexyloxyl) benzoate (CCH∗) 及兩種具不同烷基鏈長的非手性草酸化合物N’, N’-di(4-(hexyloxy)benzoyl)-hydrazide (AG6)和N’,N’-di(4-(undecyl- oxy)benzoyl)-hydrazide (AG11)並通過掌性環境來誘導非手性分子的自組裝以形成不對稱自組裝結構。由於空間的位阻影響,CCH∗在任何類型的有機溶劑中均無法形成凝膠。 另一方面,AG6和AG11在多種溶劑中能形成非掌性凝膠。從結果可得知極性、側鏈分支和分子間作用力是凝膠化的關鍵因素。從凝膠的溫度相關性1H-NMR分析得知,凡得瓦力和π-π相互作用是導致分子自組裝形成三維網絡的關鍵因素。此外,CCH∗做為添加到非掌性化合物中的掌性摻雜劑,可誘導形成不對稱的自組裝結構。由結果得知,在掌性環境下向非掌性凝膠劑中摻雜CCH∗會導致螺旋結構的形成。我們使用圓二色性(CD)光譜和小角度X射線散射(SAXS)確認所製備的不對稱構造。
第二部分: 人類可以不斷從充滿新奇、複雜性且多樣性的自然界中獲得靈感的源泉。在現今,模仿自然界中的智能結構來設計具有自我調節功能的仿生微型機器人仍然是一個巨大的挑戰。在這部分,我們展示了一種仿生的軟性材料,可利用光刺激來觸發其機械運動,並結合液晶彈性體(LCE)和可光異構化的偶氮化合物設計了這一種光敏含羞草薄膜。為了控制彎曲方向,使用紫外線控制薄膜的聚合度梯度。此聚合薄膜包含一高密度及一低密度液晶介晶面。在光照的刺激下,此薄膜能展現出類似於含羞草的形狀變化。透過偶氮化合物的光化學順反式異構化,薄膜內的高分子網絡能經歷可逆的變化。在這項研究中,少量的可光異構化的1-Hydroxy-n-(4-nitro-azobenzene-4′-oxy) hexane(AZO)能誘導明顯的可逆結構轉變。實驗中發現頂面和底面的液晶元密度差異是彎曲控制的重要因素。這項研究提供了一種製造在光照射過程中可調控彎曲方向的薄膜之新方法。該光可調薄膜有望用於微機器人和微機械領域中。
第三部分: 在本研究中,我們成功合成了一系列具新穎性且結構對稱的雙膽固醇單元及異山梨醇衍生物(BCIE、BCIC2和BCIC4)來做為響應其環境變化的膠凝劑。從不同溶劑中膠凝能力的結果可得知改變與膽固醇單元相連的基團(酯/氨基甲酸酯)可以使化合物的膠凝行為發生顯著的變化。有機凝膠的形態可以透過改變有機溶劑的類型來調節。經由電子顯微鏡的觀察發現,隨著溶劑的變化,膠凝劑分子能自組裝成起皺或緻密的纖維形狀。在1-己醇和1-辛醇溶劑中,BCIE凝膠顯示出很強的CD(圓二色性)信號,說明了凝膠化在這些凝膠系統中誘導了超分子掌性。根據FTIR和可變溫度式1H-NMR分析,凡得瓦力和π-π堆積(來自1, 2, 3-三唑和芳香族單元)的二級作用力在溶劑中對於化合物的聚集中有關鍵的影響,我們便根據此推斷提出了形成凝膠的機制。可以通過添加三氟乙酸(TFA)觸發凝膠-溶膠的相變化,當利用三乙胺(TEA)中和時,凝膠態可在一天後獲得,這說明凝膠-溶膠相變化可通過調節pH值來控制,這可由1H-NMR和SEM的分析進一步證實。此外,透過與Pd2+和Zn2+的相互作用可以選擇性地控制凝膠到溶膠的相變過程,因為正離子與1, 2, 3-三唑的結合破壞了三唑之間的相互作用,使凝膠產生塌陷。然而,在吡啶存在下添加Pd2+和Zn2+都可增強BCIE的凝膠穩定性,而在其他溶劑中凝膠則會塌陷,這可能是由於吡啶基團的螯合作用所致。這種凝膠的另一個有趣的發現是當使用膠凝劑作為穩定劑時,會生成穩定的油包水(W/O)凝膠乳液,在只有2%(w/v)穩定劑的情況下,苯乙烯可以當作連續相,水則作為分散劑。水與苯乙烯的任何比例下均可觀察到凝膠乳液。
第四部分: 我們已開發出具有不同烷基鏈長度的兩種結構異構的偶氮苯和膽固醇基的衍生物作為ALS型膠凝劑(N2和N4),並透過光譜確認其結構。在這兩種膠凝劑中,N4比N2更有效率,因為N4可以膠凝更多的溶劑。在同一溶劑系統中,N4的臨界膠凝濃度(CGC)小於15 N2。使用SEM和TEM對兩種膠凝劑的形態進行觀察發現N4展現出自組裝的纖維結構而N2展現出球形的奈米顆粒。膽固醇基單元之間的凡得瓦作用力,酰胺鍵之間的氫鍵以及偶氮苯單元之間的π-π堆積均成為聚集和凝膠形成的驅動力。這些驅動力可藉由溫度相關性1H-NMR、FTIR和XRD分析得到證明。凝膠溫度的提高使1H-NMR光譜中的質子移動以及FTIR光譜中的吸收帶20發生了變化,這顯示分子之間的分子間作用力被破壞並引起了凝膠往溶膠的轉變。當冷卻至室溫後,這些轉變是可逆的。同樣地,凝膠往溶膠的轉變可以由紫外光觸發(基於反式/順式異構化)。然而,由於形成了更穩定的順式異構體,因此在可見光存在下這種轉變是不可逆的,可透過加熱和冷卻順式結構來保持凝膠狀態。此外,由模擬軟體可確定的分子長度與從XRD分析觀察到的值互相吻合,在N2和N4中發現層間25距離分別為1.78和1.85 nm。基於這一發現,我們提出了一種聚集的機制。差示掃描量熱法(DSC)和偏振光學顯微鏡(POM)的結果說明兩種膠凝劑在加熱和冷卻循環中均顯示出顆粒狀的向列型結構。這些膠凝劑在含有膠凝和非膠凝溶劑的溶劑中可進行相選擇膠凝,這證明了這些膠凝劑可用於分離和純化溶劑。
Abstract
Functional polymers are now being pushed through the short-term market for new functional materials which can be used in modern technology. Development of functional materials for some specific purpose is getting important. This dissertation investigates on synthesis and application of functional polymers on asymmetric structure induction and actuator fabrication. This research work consist of following parts:
Part I: One predesigned chiral steroid base compound cholesteryl 4-(carbonyloxy) 4-(hexyloxyl) benzoate (CCH∗) and two achiral compounds with various alkyl chain length oxalyl acid N’,N’-di(4-(hexyloxy)benzoyl)-hydrazide (AG6) and oxalyl acid N’,N’-di(4-(undecyloxy)benzoyl)-hydrazide (AG11) have been successfully synthesized. Formation of asymmetric self-assembled constructions via self-assembly of achiral molecules in chiral environment was investigated. Due to steric hindrance, CCH∗ could not form gel in any kind of organic solvents. On the other hand, AG6 and AG11 formed achiral gels in many kinds of solvent. The results suggest that polarity, side branch and intermolecular forces are the key factors for the gelation. Temperature-dependent 1H-NMR analysis of the fabricated gels show that van der Waals forces and π-π interactions are key factors leading to self-assembly of molecules result in three-dimensional networks. In addition, CCH∗ was used as a chiral dopant added into achiral compounds forming asymmetric selfassembled constructions. The results indicate that doping of CCH∗ into achiral gelators giving a chiral environment leads to the formation of helical constructions. The fabricated asymmetric constructions were confirmed using circular dichroism (CD) spectroscopy and small angle X-ray scattering (SAXS).
Part II: The intelligence, complexity, and diversification of nature is a continuous source of inspiration for humankind. Imitating natural intelligence to devise bionic microrobots with self-regulated features remains an enormous challenge. Herein, we demonstrate a biomimetic soft material that uses light to trigger mechanical motion. This light-sensitive mimosa mimetic film was designed based on liquid crystal elastomers (LCEs) and photoisomerizable azo compounds. To control the bending direction, a predesigned UV-induced gradient polymerization was used. The energy-controlled polymerized film comprises one high-density and one low-density liquid crystal mesogen face. Similar to mimosas, the fabricated films achieved stimuli-responsive actuation, exhibiting shape deformation upon light illumination. The elastic network undergoes reversible shape changes via photochemical trans-cis isomerization of an azo compound in response to a stimulus. In this study, only a small amount of photoisomerizable 1-Hydroxy-n-(4-nitro-azobenzene-4′-oxy) hexane (AZO) was used; however, the domino effect caused a significant reversible actuation. The mesogen density of the top and bottom faces was found to be an important factor for the bending control. This study explores a new way to fabricate films that can bend in controlled directions during light irradiation. This phototunable film is expected to be used for applications in microrobotics and micromachinery.
Part III: A new series of symmetric, bis-cholesteryl-appended, isosorbide derivatives (BCIE, BCIC2 and BCIC4) were designed as gelators to respond to changes to their environment and were synthesized successfully. The results from the gelation ability in different solvents revealed that changing the linking group (ester/carbamate) attached to the cholesteryl units can produce a dramatic change in the gelation behavior of the compounds. The morphology of the as-formed organogels can be regulated by changing the types of organic solvents. The results from the electron microscopy studies revealed that the gelator molecule self-assembled into different aggregates, from wrinkled fibers to dense fibers with the change of solvents. The gels of BCIE in 1-hexanol and 1-octanol exhibited strong CD (circular dichroism) signals, indicating that the gelation induced supramolecular chirality in these gel systems. Secondary forces of van der Waals and π-π stacking (from both 1,2,3-triazole and aromatic units) played important roles in the aggregation of compounds in the solvents according to the FTIR and variable temperature 1H-NMR analysis, and a mechanism for the gel formation was proposed. The gel-tosol phase transition can be triggered by the addition of trifluoroacetic acid (TFA), and the gel state was obtained slowly (after 1 day) when neutralizing with triethyl amine (TEA), which indicated that the solgel phase transitions are tunable by pH, which is further supported by the 1H-NMR and SEM analysis. In addition the results showed that the gel-to-sol phase transition process could be selectively controlled by interaction with Pd2+ and Zn2+ because complexation with 1,2,3-triazoles destroyed the interactions between the triazoles, collapsing the gel. However, the gel stability of BCIE was enhanced by the addition of Pd2+ and Zn2+ in presence of pyridine, whereas the gel collapsed in other solvents, which may be due to the chelating effect of the pyridine moiety. Another interesting factor of this gel is that when using the gelator as a stabilizer, stable water in oil (W/O) gel-emulsions were created, in which styrene can be used as the continuous phase, water as the dispersed phase with a stabilizer in the continuous phase of only 2% (w/v). Gel-emulsions were observed with any ratio of water to styrene.
Part IV: Two structurally isomeric azobenzene- and cholesteryl-based derivatives with varying alkyl chain lengths were developed as ALS-type gelators (N2 and N4) and synthesized and characterized spectroscopically. Of the two, N4 acted as a more efficient gelator than N2 since N4 could gel a larger number of solvents. The critical gelation concentration (CGC) of N4 was found to be less than that of 15 N2 in the same solvent system. The morphological analyses of both gelators using SEM and TEM revealed that N4 exhibited selfassembled fibrous structures, whereas N2 exhibited spherical nanoparticles. The van der Waals interactions between the cholesteryl units, hydrogen bonding between the amide linkages and π-π stacking between the azobenzene units provided the driving force for the aggregation and gel formation. These driving forces were evidenced by temperature dependent 1H-NMR, FTIR and XRD analyses. Increasing the temperature of the gels shifted (upfield and downfield) the protons in the 1H-NMR spectra as well as the absorption bands 20 in the FTIR spectra indicating that the intermolecular forces between the molecules became disrupted and caused gel→ sol transitions. These transitions were reversible after cooling to room temperature. Similarly, the gel→ sol transitions could be triggered by UV light (due to trans/cis isomerization); however, the transition was irreversible in the presence of visible light due to the formation of the more stable cis isomer. Hence, the gel state could be retained by heating and cooling the cis-conformation. In addition, the length of the molecule as determined by simulation software was found to match the values observed from the XRD analysis, and the interlayer 25 distances were found to be 1.78 and 1.85 nm for N2 and N4, respectively. Based on this evidence, an aggregation mechanism was proposed. The differential scanning calorimetry (DSC) and polarized optical microscopy (POM) results revealed that both gelators exhibited grainy nematic mesophase textures during the heating and cooling cycles. These gelators underwent phase-selective gelation in the solvent mixtures containing gelling and nongelling solvents, which demonstrated the applicability of these gelators for the separation and purification of solvents.
Chapter 1
References
1. M.S. Hosseini, I. Amjadi, M. Mohajeri, M. Z Iqbal, A. Wu and M. Mozafari. Textbook, Advanced Functional Polymers for Biomedical Applications, 2019, chapter 1.
2. Z. An, Z. Cai, H. Chen, H. Chen, Y. Dong, X. Feng, W. Fu, J. Gu, Y. Han, D. Hu, R. Hu, D. Huang, F. Huang, F. Huang, Y. Huang, J. Jin, X. Jin, Q. Li, T. Li, Z. Li, Z. Li, J. Liu, J. Liu, S. Liu, H. Peng, A. Qin, X. Qing, Y. Shen, J. Shi, X. Sun, B. Tong, B. Wang, H. Wang, L. Wang, S. Wang, Z. Wei, T. Xie, C. Xu, H. Xu, Z. Xu, B. Yang, Y. Yu, X. Zeng, X. Zhan, G. Zhang, J. Zhang, M. Q. Zhang, X. Zhang, X. Zhang, Y. Zhang, Y. Zhang, C. Zhao, W. Zhao, Y. Zhou, Z. Zhou, J. Zhu, X. Zhu and B. Z. Tang,, 2020, Mater. Chem. Front, 1-275.
3. https://www.lucintel.com/functional-polymer-market, Lucintel, 2020.
4. K. Horie, M. Barón, R. B. Fox, J. He, M. Hess, J. Kahovec, T. Kitayama, P. Kubisa, E. Maréchal, W. Mormann, R. F. T. Stepto, D. Tabak, J. Vohlídal, E. S. Wilks, and W. J. WORK, 2004, Pure Appl. Chem., Vol. 76, No. 4, pp. 889–906.
5. M. Liu, L. Zhang, and T. Wang, Chem. Rev. 2015, 115, 7304−7397.
6. S. Fitriyani, C. Y. Liu, Y. Yuniarti , J. H Liu, Journal of the Taiwan Institute of Chemical Engineers, 2018, 91, 481-488
7. D. N. Nadimetla, M. A. Kobaisi, S. T. Bugde, and S. V. Bhosale, Chem. Rec., 2020, 20, 1–28.
8. B. Qin, Z. Yin, X. Tang, S. Zang, Y. Wu, J. F. Xu, X. Zhang, Progress in Polymer Science, 2020, 100, 101167.
9. B. Shen, Y. Kim, and M. Lee, Adv. Mater., 2020, 1905669.
10. S. Fitriyani, C. Y. Liu, Y. H. Hung, Y. S. Zhang , J. H. Liu, eXPRESS Polymer Letters, 2020, 14, No.6, 566–575.
11. S W Ula, N. A. Traugutt, R. H. Volpe, R. R. Patel, K. Yu and C. M. Yakack, Liquid Crystals Reviews, 2018, VOL. 6, NO. 1, 78–107.
Chapter 2
References
1. M. Liu, L. Zhang, and T. Wang, Chem. Rev., 2015, 115, 7304−7397.
2. D. N. Nadimetla, M. A. Kobaisi, S. T. Bugde, and S. V. Bhosale, Chem. Rec., 2020, 20, 1–28.
3. B. Shen, Y. Kim, and M. Lee, Adv. Mater., 2020, 1905669.
4. S. Fitriyani, C. Y. Liu, Y. Yuniarti , J. H Liu, Journal of the Taiwan Institute of Chemical Engineers, 2018, 91, 481-488
5. N. M. Sangeetha, and U. Maitra, Chem. Soc. Rev., 2005, 34, 821–836.
6. T. Jiao, Y. Wanga, F. Gao, J. Zhoua, F. Gao, Progress in Natural Science: Materials International, 2012;22(1):64–70)
7. F. L. Carles, R. C. Marín, M. Peris, F. Galindo, J. F. Miravet, Langmuir, 2017, page 1-22.
8. B. Qin, Z. Yin, X. Tang, S. Zhang, Y. Wu, J. F. Xu, X. Zhang, Progress in Polymer Science, 2020, 100, 101167.
9. E. R. Draper, and D. J. Adams, Chem, 2017, 3, 390–410.
10. R. G. Weiss, J. Am. Chem. Soc. 2014, 136, 21.
11. L. Li, J. M. Scheiger, and P. A. Levkin, Adv. Mater, 2019, 1807333.
12. L. H. Fu, C. Qi, M. G. M and P. Wan, J. Mater. Chem. B, 2019, 7, 1541.
13. I. Tomatsu, K. Peng, A. Kros, Advanced Drug Delivery Reviews, 2011, 63, 1257–1266
14. Z. Zhang, T. Li Y. Liu, F. Shang, B. Chen Y. Hu S. Wang Z. Guo, Polym Technol. 2018, 37, 2186–2194.
15. O. Erol, A. Pantula, W. Liu, and D. H. Gracias, Adv. Mater. Technol., 2019, 4, 4 1900043.
16. X. Dou, N. Mehwish, C. Zhao, J. Liu, C. Xing, and C. Feng, Chem. Soc. Rev., 2010, 39, 455–463.
17. F. Ullah, M. B. H. Othman, F. Javed, Z. Ahmad, H. M. Akil, Materials Science and Engineering: C, 2015, Volume 57, Pages 414-433.
18. M. Suzuki and K. Hanabusa, Chem. Soc. Rev., 2010, 39, 455–463.
19. P. Lin, N. X. Zhang, J. J. Li, J. Z, J. H Liu, B. Zhang, J. Song, , Chinese Chemical Letters, 2016, S1001-8417(17)30003-7.
20. R. Balamurugan, Y. S. Zhang, S. Fitriyani and J. H. Liu, Soft Matter, 2016,12, 5214-5223.
21. C. L. Esposito, P. Kirilov, V. G. Roullin, Journal of Controlled Release, 2018,Volume 271, Pages 1-20.
22. X. Feng, C. Liu, X. Wang, Y. Jiang, G. Yang, R. Wang, K. Zheng, W. X. Zhang, T. Wang and J. Jiang, Frontiers in Chemistry, 2019, 7, 336
23. Cloé L. Esposito, Plamen Kirilov, V. Gaëlle Roullin, Journal of Controlled Release, 2017, 271, 1-20.
24. P. Rastogi, J. Njuguna, B. Kandasubramanian, European Polymer Journal, 2019, 121, 109287.
25. G. A. DiLisi, Ebook Classifications of liquid crystals, 2019, Morgan & Claypool Publishers, Pages 3-1 to 3-20.
26. S W Ula, N. A. Traugutt, R. H. Volpe, R. R. Patel, K. Yu and C. M. Yakack, Liquid Crystals Reviews, 2018, VOL. 6, NO. 1, 78–107.
27. S. Fitriyani, C. Y. Liu, Y. H. Hung, Y. S. Zhang , J. H. Liu, eXPRESS Polymer Letters, 2020, 14, No.6, 566–575.
28. H. Shahsavan, L. Yu, A. Ja´kli and B. Zhao, Soft Matter, 2017, 13, 8006—8022.
29. M. O. Saed, R. H. Volpe, N. A. Traugutt, R. Visvanathan, N. A. Clark and C. M. Yakacki, Soft Matter, 2017, 13(41): 7537–7547.
30. C. J. Kloxin, T. F. Scott, B. J. Adzima, C. N. Bowman, Covalent, Macromolecules, 2010, 43(6): 2643–2653.
31. Z. Wang, H. Tian, Q. He, S. Cai, ACS Appl Mater Interfaces, 2017, 9(38):33119–33128.).
32. R. S. Kularatne, H. Kim, J. M. Boothby, T. H. Ware, Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 395–411.
Chapter 3
References
1. F. Ercole, M. R. Whittaker, J. F. Quinn, and T. P. Davis, Biomacromolecules, 2015, 16, 7: 1886–914.
2. R. Milo, R. Philips, Cell biology by the numbers. 1st edition. Israel: Taylor & Francis
Group; 2015. Science.
3. M. Kumar, S. J George, Chem Sci, 2014; 5:3025–30.
4. M. Gaeta, I.P.Oliveri, M. E. Fragala, S.Failla, A.D’Urso, D.S.Bella, R. Purrello, Chem Commun, 2016, 52: 8518–21.
5. J. Wu, T. Yi, Q. Xia, Y. Zou, F. Liu, J. Dong, T. Shu, F. Li, C. Huang, Chem Eur J, 2009, 15 (25): 6234–43.
6. K. J. Skilling, F. Citossi, T. D. Bradshaw, M. Ashford, B. Kellama, M. Marlow. Soft Matter, 2014; 10: 237–56.
7. A. S. Mahadevi, G. N. Sastry Chem Rev, 2016; 116: 2775–825.
8. G. Yu, X. Yan, C. Han, F. Huang, Chem Soc Rev, 2013, 42: 6697–722.
9. E. R. Draper, D. J. Adams, Chem Commun, 2016, 52: 8196–206.
10. Y. Yamamoto, A. Oyanagi, A. Miyawaki, K. Tomioka, Tetrahedron Lett, 2016, 57:5889–92.
11. X. Shen, T. Jiao,Q. Zhang, H. Guo, Y. Lv, J. Zhou, F. Gao, J Nanomater. 2013, 2013:1–8.
12. C. G. Guo, L. Wang, Y. K. Li, C. Q. Wang, React Funct Polym, 2013, 73: 805–12.
13. J. Kim, J. Lee, W. Y. Kim, H. Kim, S. Lee, H. C. Lee, Y. S. Lee, M. Seo, S. Y. Kim, Nat Commun, 2015, 6: 6959.
14. A. R. Hirst, J. F. Miravet, B. Escuder, L. Noirez, V. Castelletto, I. W. Hamley, D. K. Smith, Chem Eur J, 2009, 15: 372–9.
15. S. Marchesan, K. E. Styan, C. D. Easton, L. Waddington, A. V. Vargiu, J Mater Chem B, 2015, 3(41): 8123–32.
16. T. Jiao, Y. Wang, F. Gao, J. Zhou, F. Gao, Prog Nat Sci Mater Int, 2012, 22 (1):64–70.
17. D. Xu, M. Liu, H. Zou, Q. Huang, H. Huang, J. Tian, R. Jiang, Y. Wen, X. Zhang, Y. Wei. JTICE, 2017, 78: 455–61.
18. Anuradha, D. D. La, M. A. Kobaisi, S. V. Bhosale, Sci Rep, 2015, 5:15652.
19. S. R. Bobe, M.A Kobaisi, S. V. Bhosale, Chem Open, 2015, 4: 516–22.
20. N. Sakai, P. Talukdar, S. Matile, Chirality, 2006, 18: 91–4.
21. S. Wang and N. M. Cann,, J. Chem. Phys, 2009, 130, 244701.
22. K. P. Nandre, S. V. Bhosale, K. R. Krishna, A. Gupta, S. V Bhosale, Chem Commun, 2013, 49: 5444–6.
23. S. C. Kana, C. C. Lee, Y.C. Hsu, Y. H. Peng, C.C. Chen, J. J. Huang, J. W. Huang, C. J. Shieh, T. Y. Juang, Y. C. Liu, JTICE 2017, 80:10–15.
24. J. Clayden, Nat Nanotechnol, 2017, 12 (5):403–4.
25. F. G. A. Lister, B. A. F. Bailly, S. J. Webb, J. Clayden, Nat Chem , 2017, 9: 420–5.
26. Y. S. Zhang, A.V. Emelyanenko, J. H. Liu, JTICE, 2016, 65: 444–51.
27. L. Kai, L. Qin, X. Wang, L. Zhang, M. Liu, Phys Chem Chem Phys, 2013, 15: 20197–202.
28. S. Marchesan, C. D. Easton, F. Kushkaki, L. Waddington, P. G. Hartley, Chem Commun 2012, 48:16:2195–7.
29. S. Marchesan, C. D. Easton, K. E. Styan, L. J. Waddington, F. Kushkaki, L. Goodall, K. M. McLean, J. S. Forsythe, P. G. Hartley, Nanoscale, 2014, 6:10:5172–80.
30. D. Kumaraguru, D. Vaithialingam, J. B. Arockiam, A. Veeramanoharan, S. Ayyanar, JTICE, 2016, 62:31–8.
31. H. Zhang, Z. Gong, K. Sun, R. Duan, P. Ji, L. Li, C. Li, K. Mullen, L. Chi, J Am Chem Soc,2016; 138:11743–8.
32. L. Miao, Y. Yang, Y. Tu, S. Lin, J. Hu, Z. Du, M. Zang, Y. Li, React Funct Polymers, JTICE, 2017, 115:87–94.
33. T. Jiao, F. Gao, Y. Wang, J. Zhou, F. Gao, X. Luo, Curr Nanosci, 2012, 8(1):111–16.
34. R. M. Meudtner, S. Hecht. Angew Chem Int Ed, 2008, 47:4926–30.
35. T. W. Chung, T. H. Chou, K. Y. Wu, JTICE, 2016, 60: 8–14.
36. P. Geethamani, P. K. Kasthuri, JTICE, 2016, 63: 490-9.
37. L. Angiolini, T. Benelli, L. Giorgini, React Funct Polym, 2011, 71:2014–209.
38. M.F. Rizkiana, R. Balamurugan, J. H. Liu, Royal Soc Chem, 2015, 39:6068–75.
39. R. Balamurugan, Y.S Zhang, S. Fitriyani, J. H. Liu, Soft Matter, 2016, 12:5214–23.
40. G. H. Waqniere. WILEY-VCH, 2007. ISBN 978-3-906-39038-3.
Chapter 4
References
1. O. M. Wani, H. Zeng, A. Priimagi, Nature Communications, 2017, 8, 15546/1–15546/7.
2. U. G. Wegst, H. Bai, E. Saiz, A. P. Tomsia, R. O, Nature Materials, 2015, 14, 23–36.
3. K. J. Rossin, Design and Nature V, 2010, 138, 559–570.
4. M. K. Purkait, M. K. Sinha, P. Mondal, R. Singh, Interface Science and Technology, 2018, 25, 145–171.
5. E. Morris, M. Chavez, C. Tan, Current Opinion in Biotechnology, 2016, 39, 97–104.
6. A. Cully, J. Clune, D. Tarapore, J. P. Mouret, Nature, 2015, 521, 503–507.
7. K. Y. Ma, P. Chirarattananon, S. B. Fuller, R. J. Wood, Science, 2013, 340, 603–607.
8. O. Speck, T. Speck, Biomimetics, 2019, 4, 1–34.
9. H. G. Kim, K, Jeong, T. W. Seo, Journal of Bionic Engineering, 2017, 14, 34–46.
10. S. A. Morin, R. F. Shepherd, S. W. Kwok, A. A. Stokes, A. Nemiroski, G. M. Whitesides, Science, 2012, 337, 828–832.
11. S. Tottori, L. Zhang, F. Qiu, K. K. Krawczyk, A. F. Obregon, B. J. Nelson , Advanced Materials, 2012, 24, 811–816.
12. S. J. Gershman, E. J. Horvitz, J. B. Tenenbaum, Science, 2015, 349, 273–278.
13. C. G. Garcia, D. M. Lorian, G. Bustelo, J. M. C. Lovelle, International Journal of Interactive Multimedia and Artificial Intelligence, 2017, 4, 7–10.
14. S. Lashgari, M. Karrabi, I. Ghasemi, H. Azizi, M. Messori, K. Paderni, Express Polymer Letters, 2016, 10, 349–359.
15. A. V. Maksimkin, S. D. Kaloshkin, M. V. Zadorozhnyy, F. S. Senatov, A. I. Salimon, T. Dayyoub, Express Polymer Letters, 2018, 12, 1072– 1080.
16. T. Szmechtyk, N. Sienkiewicz, K. Strzelec, Express Polymer Letters, 2018, 12, 640–648
17. W. F. Ji, C. W. Li, S. K. Yu, P. J. Chen, H. L. Chen, R. D. Chen, B. H. Chen, C. L. Hsu, J. M. Yeh, Express Polymer Letters, 2017, 11, 635–644.
18. K. H. Park, S. J Kim, M.J Hwang, H. J. Song, Y. J. Park, Express Polymer Letters, 2017, 11, 14–20.
19. J. Shang, X. Le, J. Zhang, T. Chen, P. Theato, Polymer Chemistry, 2019, 10, 1036–1055.
20. Y. Zou, A. Lam, D. E. Brooks, A. S. Phani, J. N. Kizhakkedathu, Angewandte Chemie, 2011, 123, 5222–5225.
21. S. Saha, D. Copic, S. Bhaskar, N.Clay, A. Donini, A.J.Hart, J. Lahann, Angewandte Chemie International Edition, 2012, 51, 660–665.
22. T. Kamal, S. Y. Park, ACS Applied Materials Interfaces, 2014, 6, 18048–18054.
23. B. Ziołkowski, D. Diamond, Chemical Communications, 2013, 49, 10308–10310.
24. M. Rogoż, H. Zeng, C.Xuan, D. S. Wiersma, P. Wasylczyk Advanced Optical Materials, 2016, 4, 1689–1694.
25. T. Ikeda, J. I. Mamiya, Y. Yu, Angewandte Chemie International Edition, 2007, 46, 506-528.
26. C. Ohm, M. Brehmer, R. Zentel, Advanced Materials, 2010, 22, 3366–387.
27. H. Li, P. Keller, B. Li, X. Wang, M. Brunet, Advanced Materials, 2003, 15, 569–572.
28. P. H. Raven, Biological Rhythm Research, 2000, 31, 451–468.
29. J. Braam, New phytologist Journal, 2005, 165, 2, 373-389.
30. M. C. Lopez, H. Finkelmann, P. P. Muhoray, M. Shelley, Nature Materials, 2004, 3, 307–310.
31. H. Zeng, O. M. Wani, P. Wasylczyk, A. Priimagi, Advanced Materials, 2017, 29, 1701814/1– 1701814/7.
32. T. Kamal, S. Y. Park, ACS Applied Materials Interfaces, 2014, 6, 18048–18054.
33. J. H. Liu, Y. H. Chiu, Optical Letters, 2009, 34, 1393–1395.
34. Y. S. Zhang, A. V. Emelyanenko, J. H. Liu, Journal of Polymer Science Part B: Polymer Physics, 2017, 55, 1427–1435.
Chapter 5
References
1. F. Xin, P. Xing, S. Li, Y. Hou and A. Hao, RSC Adv., 2013, 3, 21959.
2. D. J. Beebe, J. S. Moore, J. M. Bauer, Q. Yu, R. H. Liu, C. Davadoss and B. H. Jo, Nature, 2000, 404, 588.
3. M. Burnworth, L. Tang, A. J. R. Kumpfer, A. Duncan, F. L. Beyer, G. L. Fiore, S. J. Rowan and C. Weder, Nature, 2011, 472, 334.
4. X. Yan, F. Wang, B. Zheng and F. Huang, Chem. Soc. Rev., 2012, 41, 6024.
5. J. Eastoe, M. S´anchez- Dominguez, P. Wyatt and R. Heenan, Chem. Commun., 2004, 2608.
6. J. H. van Esch and B. L. Feringa, Angew. Chem., Int. Ed. 2000, 39, 2263.
7. H. Kobayashi, A. Friggeri, K. Koumoto, M. Amaike, S. Shinkai, and D. N. Reinhoudt, Org. Lett., 2002, 4( 9), 1423.
8. A. Ajayaghosh, V. K. Praveen and C. Vijayakumar, Chem. Soc. Rev., 2008, 37, 109.
9. S. Roy and A. Banerjee, Soft Matter, 2011, 7, 5300.
10. L. Meazza, J. A. Foster, K. Fucke, P. Metrangolo, G. Resnati, and J. W. Steed, Nat. Chem., 2013, 5, 42.
11. M. Yamauchi, S. Kubota, T. Karatsu, A. Kitamura, A. Ajayaghosh and S. Yagai, Chem. Commun., 2013, 49, 4941.
12. F. Zhao, M. L. Ma and B. Xu, Chem. Soc. Rev. 2009, 38, 883.
13. Y. Hisamatsu, S. Banerjee, M. B. Avinash, T. Govindaraju and C. Schmuck, Angew. Chem., 2013, 125, 12782 –12786.
14. E. A. Appel, J. del Barrio, X. J. Loh and O. A. Scherman, Chem. Soc. Rev., 2012, 41, 6195; 15. R. J. Wojtecki, M. A. Meador and S. J. Rowan, Nat. Mater., 2010, 10, 14.
15. S-I Kawano, N. Fujita, K. J. C. van Bommel and S. Shinkai, Chem. Lett., 2003, 32, 12-13.
16. A. Friggeri, O. Gronwald, K. J. C. van Bommel, S. Shinkai and D. N. Reinhoudt, Chem. Commun., 2001, 2434.
17. D. J. Abdallah and R. G. Weiss, J. Braz. Chem. Soc., 2000, 11, 209.
18. W.-T. Liu, N. Tohnai, I. Hisaki, M. Miyata, W.-T. Chen, Y.-J. Wu and J.-H. Liu, J. Polym. Sci., Part A: Polym. Chem., 2013, 51, 793.
19. R. Balamurugan, W. K. Ming, C. C. Chien and J. H. Liu, Soft Matter, 2014, 10, 8963-8970.
20. M. F. Rizkiana, R. Balamurugan and J. H. Liu, New J. Chem., 2015, 39, 6068-6075.
21. H. R. Kricheldorf, Polym. Rev., 1997, 37, 4599-4631.
22. F. Fenouillot, A. Rousseau, G. Colomines, R. Saint-Loup; J. –P. Pascault, Prog. Polym. Sci., 2010, 35, 578-622.
23. S. J. Sun, G. Schwarz, H. R. Kricheldorf and T. C. Chang, J. Polym. Sci. Part A: Polym. Chem., 1999, 37, 1125–1133.
24. H. R. Kricheldorf, S. J. Sun and A. Gerken, Macromolecules 1996, 29, 8077–8082.
25. M. Yokoe, K. Aoi and M. Okada, J. Polym. Sci. Part A: Polym. Chem., 2003, 41, 2312–2321.
26. H. R. Kricheldorf, S. Chatti, G. Schwarz and R. Kruger, J. Polym. Sci. Part A: Polym. Chem., 2003, 41, 3414–3424.
27. L. Jasinska and C. E. Koning, J. Polym. Sci. Part A: Polym. Chem. 2010, 48, 5907–5915.
28. C. H. Lee, H. Takagi, H. Okamoto, M. Kato and A. Usuki, J. Polym. Sci. Part A: Polym. Chem., 2009, 47, 6025–6031.
29. M. Beldi, R. Medimagh, S. Chatti, S. Marque, D. Prim, A. Loupy and F. Delolme, Eur. Polym. J., 2007, 43, 3415–3433.
30. Y. J. Li, J. C. Huffman, and A. H. Flood, Chem. Commun., 2007, 2692.
31. R. M. Meudtner, M. Ostermeier, R. Goddard, C. Limberg, S. Hecht, Chem. Eur. J., 2007, 13, 9834.
32. J. Lu, J. Hu, Y. Song and Y. Ju, Org. Let., 2011, 13, 3372-3375.
33. X. Chen, K. Liu, P. He, H. Zhang and Y. Fang, Langmuir, 2012, 28, 9275-9281.
34. J. X. Peng, H. Y. Xia, K.Q. Liu, D. Gao, M. N. Yang, N. Yan, Y. Fang, J. Colloid Interface Sci., 2009, 336, 780-785.
35. D. K. Smith, Chem. Soc. Rev., 2009, 38, 684-694.
36. A. Takahashi, M. Sakai and T. Kato, Polym. J., 1980, 12, 335-341.
37. T. F. Jiao, F.-Q. Gao, X.-H. Shen, Q.-R. Zhang, J.-X. Zhou and F.-M. Gao, Materials, 2013, 6, 5893-5906.
38. A. Ajayaghosh, P. Chithra, R. Varghese and K. P. Divya, Chem. Commun., 2008, 969.
39. P. Duan, H. Cao, L. Zhang and M. Liu, Soft Matter, 2014, 10, 5428-5448.
40. C. W. Jun and C. C. Feng, Chin. Sci. Bull., 2012, 57, 4278-4283.
41. D. Maity and T. Govindaraju, Chem. Commun., 2012, 48, 1039-1041.
42. N. Narayanaswamy, D. Maity and T. Govindaraju, Supramol. Chem., 2011, 23, 703-709.
43. B. Gao, H. Li, D. Xia, S. Sun and X. Ba, Beilstein J. Org. Chem., 2011, 7, 198–203.
44. X. Zhang, Z. Chen and F. Wurthner, J. Am. Chem. Soc. 2007, 129, 4886-4887.
45. Z. Huang, H. Lee, E. Lee, S.-K. Kang, J.-M. Nam and M. Lee, Nat. Commun., 2011, 2(1), 459-459.
46. Anuradha, D. Duc La, M. Al Kobaisi and S. V. Bhosale, Sci. Rep., 2015, 5, 15652.
Chapter 6
References
1. X. Y. Hou, D. Gao, J. L. Yan, Y. Ma, K. Q. Liu and Y. Fang, Langmuir, 2011, 27, 12156- 12163.
2. A. Ajayaghosh, V. K. Praveen and C. Vijayakumar, Chemical Society Reviews, 2008, 37, 109-122.
3. A. Ajayaghosh and V. K. Praveen, Accounts of Chemical Research, 2007, 40, 644-656.
4. A. Aggeli, M. Bell, N. Boden, J. N. Keen, P. F. Knowles, T. C. B. McLeish, M. Pitkeathly and S. E. Radford, Nature, 1997, 386, 259-262.
5. H. Ihara, T. Sakurai, T. Yamada, T. Hashimoto, M. Takafuji, T. Sagawa and H. Hachisako, Langmuir, 2002, 18, 7120-7123.
6. T. Naota and H. Koori, Journal of the American Chemical Society, 2005, 127, 9324-9325. 7. G. Zhu and J. S. Dordick, Chemistry of Materials, 2006, 18, 5988-5995.
8. C. C. Chien and J. H. Liu, Science of Advanced Materials, 2014, 6, 111-119.
9. R. Xing, K. Liu, T. Jiao, N. Zhang, K. Ma, R. Zhang, Q. Zou, G. Ma and X. Yan, Advanced Materials, 2016, 28, 3669-3676.
10. X. Zhao, K. Ma, T. Jiao, R. Xing, X. Ma, J. Hu, H. Huang, L. Zhang and X. Yan, Scientific Reports, 2017, 7, 44076.
11. K. Sugiyasu, N. Fujita and S. Shinkai, Angewandte Chemie International Edition, 2004, 43, 1229-1233.
12. Y. Wu, S. Wu, X. Tian, X. Wang, W. Wu, G. Zou and Q. Zhang, Soft Matter, 2011, 7, 716-721.
13. R. Perez-Ruiz and D. Diaz Diaz, Soft Matter, 2015, 11, 5180- 5187.
14. H. C. Lim, S. H. Min, E. Lee, J. Jang, S. H. Kim and J.-I. Hong, ACS Applied Materials & Interfaces, 2015, 7, 11069- 11073.
15. M. M. Ibrahim, S. A. Hafez and M. M. Mahdy, Asian Journal of Pharmaceutical Sciences, 2013, 8, 48-57.
16. Y. Meng and Y. Yang, Electrochemistry Communications, 2007, 9, 1428-1433.
17. S. Chen, X. Q. Tong, H. W. He, M. Ma, Y. Q. Shi and X. Wang, Acs Applied Materials & Interfaces, 2017, 9, 11924- 11932.
18. P. Deindorfer, R. Davis and R. Zentel, Soft Matter, 2007, 3, 1308-1311.
19. T. Haino, Y. Hirai, T. Ikeda and H. Saito, Organic & Biomolecular Chemistry, 2013, 11, 4164-4170.
20. T. F. Jiao, Y. J. Wang, Q. R. Zhang, J. X. Zhou and F. M. Gao, Nanoscale Research Letters, 2013, 8.
21. J. H. Jung, S. H. Lee, J. S. Yoo, K. Yoshida, T. Shimizu and S. Shinkai, Chemistry-a European Journal, 2003, 9, 5307-5313.
22. H. Kobayashi, A. Friggeri, K. Koumoto, M. Amaike, S. Shinkai and D. N. Reinhoudt, Organic Letters, 2002, 4, 1423- 1426.
23. A. Pal, S. Shrivastava and J. Dey, Chemical Communications, 2009, 6997-6999
24. X. Ran, L. L. Shi, K. Zhang, J. Lou, B. Liu and L. J. Guo, Journal of Nanomaterials, 2015,
25. R. M. Yang, S. H. Peng and T. C. Hughes, Soft Matter, 2014, 10, 2188-2196.
26. J. Wu, T. Yi, Q. Xia, Y. Zou, F. Liu, J. Dong, T. Shu, F. Li and C. Huang, Chemistry – A European Journal, 2009, 15, 6234-6243.
27. M. Žinić, F. Vögtle and F. Fages, Journal, 2005, 256, 39-76.
28. T. Jiao, Y. Wang, F. Gao, J. Zhou and F. Gao, Progress in Natural Science: Materials International, 2012, 22, 64-70.
29. C. Baddeley, Z. Q. Yan, G. King, P. M. Woodward and J. D. Badjic, Journal of Organic Chemistry, 2007, 72, 7270-7278.
30. R. Balamurugan, Y. S. Zhang, S. Fitriyani and J. H. Liu, Soft Matter, 2016, 12, 5214-5223.
31. T. F. Jiao, F. Q. Gao, X. H. Shen, Q. R. Zhang, X. F. Zhang, J. X. Zhou and F. M. Gao, Materials, 2013, 6, 5893-5906.
32. S. Kawano, N. Fujita and S. Shinkai, Chemistry-a European Journal, 2005, 11, 4735-4742.
33. P. Terech, I. Furman, R. G. Weiss, H. BouasLaurent, J. P. Desvergne and R. Ramasseul, Faraday Discussions, 1995, 101, 345-358.
34. Y. P. Zhang, Y. Ma, M. Y. Deng, H. X. Shang, C. S. Liang and S. M. Jiang, Soft Matter, 2015, 11, 5095-5100.
35. M. Zinic, F. Vogtle and F. Fages, in Low Molecular Mass Gelators: Design, Self-Assembly, Function, ed. F. Fages, 2005, vol. 256, pp. 39-76.
36. B. L. Bai, X. Y. Mao, J. Wei, Z. H. Wei, H. T. Wang and M. Li, Sensors and Actuators B-Chemical, 2015, 211, 268-274.
37. B. L. Bai, M. G. Zhang, J. Wei, H. Y. Yan, H. T. Wang, Y. Q. Wu and M. Li, Tetrahedron, 2016, 72, 5363-5368.
38. S. Balamurugan, G. Y. Yeap, W. A. K. Mahmood, P. L. Tan and K. Y. Cheong, Journal of Photochemistry and Photobiology a-Chemistry, 2014, 278, 19-24.
39. X. H. Cao, X. Liu, L. M. Chen, Y. Y. Mao, H. C. Lan and T. Yi, Journal of Colloid and Interface Science, 2015, 458, 187- 193.
40. P. F. Duan, Y. G. Li, L. C. Li, J. G. Deng and M. H. Liu, Journal of Physical Chemistry B, 2011, 115, 3322-3329.
41. X. J. Gu, B. L. Bai, H. T. Wang and M. Li, RSC Advances, 2017, 7, 218-223.
42. H. Y. Guo, T. F. Jiao, X. H. Shen, Q. R. Zhang, A. D. Li and F. M. Gao, Journal of Spectroscopy, 2014, DOI: 10.1155/2014/758765.
43. Y. M. Hu, Q. S. Li, W. Hong, T. F. Jiao, G. Z. Xing and Q. L. Jiang, Journal of Spectroscopy, 2014, DOI: 10.1155/2014/970827.
44. T. Ishi-i and S. Shinkai, in Supermolecular Dye Chemistry, ed. F. Wurthner, 2005, vol. 258, pp. 119-160.
45. T. F. Jiao, Y. J. Wang, F. Q. Gao, J. X. Zhou and F. M. Gao, Progress in Natural Science-Materials International, 2012, 22, 64-70.
46. M. Kurita, M. Makihara and H. Nakano, Soft Materials, 2014, 12, 42-46.
47. Z. Y. Li, Y. D. Huang, D. L. Fan, H. M. Li, S. X. Liu and L. Y. Wang, Frontiers of Chemical Science and Engineering, 2016, 10, 552-561.
48. G. Palui and A. Banerjee, Journal of Physical Chemistry B, 2008, 112, 10107-10115.
49. X. Ran, H. T. Wang, P. Zhang, B. L. Bai, C. X. Zhao, Z. X. Yu and M. Li, Soft Matter, 2011, 7, 8561-8566.
50. Y. C. Ren, B. Wang and X. Q. Zhang, Beilstein Journal of Organic Chemistry, 2015, 11, 1089-1095.
51. M. Suzuki, Y. Maruyama and K. Hanabusa, Tetrahedron Letters, 2016, 57, 3540-3543.
52. Y. P. Wu, S. Wu, G. Zou and Q. J. Zhang, Soft Matter, 2011, 7, 9177-9183.
53. Y. F. Zhou, M. Xu, J. C. Wu, T. Yi, J. T. Han, S. Z. Xiao, F. Y. Li and C. H. Huang, Journal of Physical Organic Chemistry, 2008, 21, 338-343.
54. R. Balamurugan, W. Kai-Ming, C.-C. Chien and J. H. Liu, Soft Matter, 2014, 10, 8963-8970.
55. M. F. Rizkiana, R. Balamurugan and J. H. Liu, New Journal of Chemistry, 2015, 39, 6068-6075.
56. S. K. Choi, T. P. Thomas, M.-H. Li, A. Desai, A. Kotlyar and J. R. Baker, Photochemical & photobiological sciences: Official journal of the European Photochemistry Association and the European Society for Photobiology, 2012, 11, 653- 660.
57. R. Balamurugan, W. Kai-Ming, C. C. Chien and J. H. Liu, Soft Matter, 2014, 10, 8963-8970.
58. H. Guo, T. Jiao, Q. Zhang, W. Guo, Q. Peng and X. Yan, Nanoscale Research Letters, 2015, 10, 272.
59. J. Liu, K. Zhu, T. Jiao, R. Xing, W. Hong, L. Zhang, Q. Zhang and Q. Peng, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529, 668-676.
60. S. Banerjee, R. K. Das and U. Maitra, Journal of Materials Chemistry, 2009, 19, 6649-6687.
61. F. Aparicio, S. Cherumukkil, A. Ajayaghosh and L. Sanchez, Langmuir, 2016, 32, 284-289.
62. S. S. Babu, K. K. Kartha and A. Ajayaghosh, Journal of Physical Chemistry Letters, 2010, 1, 3413-3424.
63. S. S. Babu, S. Prasanthkumar and A. Ajayaghosh, Angewandte Chemie-International Edition, 2012, 51, 1766-1776.
64. S. S. Babu, V. K. Praveen and A. Ajayaghosh, Chemical Reviews, 2014, 114, 1973-2129. 65. S. Ghosh, V. K. Praveen and A. Ajayaghosh, in Annual Review of Materials Research, Vol 46, ed. D. R. Clarke, 2016, vol. 46, pp. 235-262.
66. A. Gopal, R. Varghese and A. Ajayaghosh, Chemistry-an Asian Journal, 2012, 7, 2061-2067.
67. R. D. Mukhopadhyay and A. Ajayaghosh, Science, 2015, 349, 241-242.
68. R. D. Mukhopadhyay, V. K. Praveen and A. Ajayaghosh, Materials Horizons, 2014, 1, 572-576.
69. S. Prasanthkumar, A. Gopal and A. Ajayaghosh, Journal of the American Chemical Society, 2010, 132, 13206-13207.
70. A. Ajayaghosh and V. K. Praveen, Accounts of Chemical Research, 2007, 40, 644-656.
71. A. Ajayaghosh, V. K. Praveen, S. Srinivasan and R. Varghese, Advanced Materials, 2007, 19, 411.
72. V. K. Praveen, S. J. George and A. Ajayaghosh, Macromolecular Symposia, 2006, 241, 1-8.
73. R. Xing, T. Jiao, Y. Liu, K. Ma, Q. Zou, G. Ma and X. Yan, Polymers, 2016, 8, 181.
74. R. Rajaganesh, A. Gopal, T. Mohan Das and A. Ajayaghosh, Organic Letters, 2012, 14, 748-751.