| 研究生: |
周迪侖 Chou, Dylan |
|---|---|
| 論文名稱: |
壓力復原力神經迴路與神經生物學機制的探討 Neural circuitries and neurobiological mechanisms relevant to stress resilience |
| 指導教授: |
許桂森
Hsu, Kuei-Sen |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 基礎醫學研究所 Institute of Basic Medical Sciences |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 長期的社交挫敗壓力 、社會交往試驗 、杏仁體基底側核 、腦內衍生神經滋養因子 、光遺傳學 、腦前額葉皮質層 |
| 外文關鍵詞: | CSDS, SIT, BLA, BDNF, optogenetic, PFC |
| 相關次數: | 點閱:163 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
經常經歷壓力事件會增加罹患焦慮症與憂鬱症的風險;然而此一風險卻存在著相當大的個體差異。在動物的焦慮症模式研究,也發現類似的個體差異現象。造成個體對壓力差異反應之生理相關影響因子,以及主要調控的神經網絡並不清楚。 在本研究中,我們利用長期的社交挫敗壓力和社會交往試驗,將C57BL/6小鼠依壓力敏感反應和壓力耐受反應分成「敏感性」和「耐受性」二組。此二組在聽覺恐懼制約模式中,呈現不同程度的制約恐懼反應,但是其先天的焦慮和憂鬱行為反應,並沒有差異。敏感性小鼠在經歷恐懼制約後,其杏仁體基底側核(basal lateral amygdala)的神經元,表現c-Fos蛋白的數目與腦內衍生神經滋養因子蛋白的表達量,比耐受性組高。利用腦內衍生神經滋養因子基因剔除的策略,我們發現恐懼制約訓練所誘發增加的杏仁體基底側核腦內衍生神經滋養因子,為決定制約恐懼反應程度的重要因子。此外,耐受性小鼠對恐懼制約所導致的心血管和皮質酮反應,則有較快恢復的能力。全身性地給予耐受性小鼠正腎上腺素再攝取抑制劑(norepinephrine reuptake inhibitor) atomoxetine,會增加恐懼制約後杏仁體基底側核神經元表現c-fos蛋白的數目,並加強其恐懼反應。相反地,β腎上腺素接受體拮抗劑(β-adrenergic receptor antagonist) propranolol會減少敏感性小鼠因恐懼制約訓練所誘發杏仁體基底側核神經元表現c-fos蛋白的數目,並降低恐懼反應。 最後,我們以雙側光遺傳學調控和神經迴路逆行追踪技術,證明腦前額葉皮質層(prefrontal cortex)神經元,控制杏仁體基底側核神經細胞活化的程度、調控杏仁體基底側核釋放腦內衍生神經滋養因子的量、以及調節制約恐懼反應的程度。 總結本研究,我們認為恐懼制約刺激所誘導的個體差異現象,與個體杏仁體基底側核所釋放腦內衍生神經滋養因子的量不同有關。而腦前額葉皮質層神經元投射至到杏仁體基底側核的神經路徑,則對恐懼制約的感受度扮演重要的調控角色。
Experiencing stressful life events increase the risk of later developing anxiety and depressive disorders. While everyone experiences their stressful events, there is considerable heterogeneity in responses. Fear conditioning in animals has been used extensively to model clinical anxiety disorders. Each individual exhibits marked differences in their propensity to undergo fear conditioning, the physiologically relevant mediators and neuronal network have not yet been fully characterized. In the present study, we grouped the stress-resistant and stress-susceptible C57BL/6 inbred mice by chronic social defeat stress (CSDS) and social interaction test (SIT) paradigms. They display different levels of fear responses in an auditory fear conditioning paradigm, while there were no significant differences between groups in innate anxiety- and depressive-like behaviors. Susceptible mice had significantly more c-Fos protein expression in neurons of the basolateral amygdala (BLA) after experiencing the conditioning. Through the use of conditional brain-derived neurotrophic factor (BDNF) knockout strategies, we find that elevated BLA BDNF level following fear conditioning training is a key mediator contributing to determine the levels of conditioned fear responses. Results also show that relative to susceptible mice, resistant mice had a much faster recovery from conditioned stimuli-induced cardiovascular and corticosterone responses. Systemic administration of norepinephrine reuptake inhibitor atomoxetine increased c-Fos protein expression in BLA neurons following fear conditioning training and promoted the expression of conditioned fear in resistant mice. Conversely, administration of β-adrenergic receptor antagonist propranolol reduced fear conditioning training-induced c-Fos protein expression in BLA neurons and reduced conditioned fear responses in susceptible mice. Furthermore, by using bidirectional optogenetic manipulations and retrograde tract-tracing technique, we demonstrate that the degree of prefrontal cortex (PFC) projection control of BLA activity modulates the levels of conditioned fear responses via regulating BDNF released from BLA. In conclusion, the data establish that naturally occurring differences in conditioned stimuli-induced BDNF release from the BLA functionally mediate individual differences in the acquisition and expression of conditioned fear, and that PFC inputs to the BLA uniquely regulate the susceptibility to fear conditioning.
Abel, T. and Lattal, K. M. (2001) Molecular mechanisms of memory acquisition, consolidation and retrieval. Curr. Opin. Neurobiol. 11, 180-187.
Adhikari, A., Lerner T. N., Finkelstein J., Pak S., Jennings J. H., Davidson T. J., Ferenczi E., Gunaydin L. A., Mirzabekov J. J., Ye L.., Kim S. Y., Lei A., and Deisseroth K. (2015) Basomedial amygdala mediates top-down control of anxiety and fear. Nature 527, 179-189.
An, B., Hong, I., and Choi, S. (2012) Long-term neural correlates of reversible fear learning in the lateral amygdala. J. Neurosci. 32, 16845-16856.
Asan, E. (1997) Ultrastructural features of tyrosine-hydroxylase-immunoreactive afferents and their targets in the rat amygdala. Cell Tissue Res. 288, 449-469.
Ascoli, G. A., Alonso-Nanclares, L., Anderson, S. A., Barrionurvo, G., Benavides-Piccione, R., Burkhalter, A., Buzsaki, G., Cauli, B., Defeipe, J., Fairen, A., Feldemyer, D., Fishell, G., Fregnac, Y., Freund, T. F., Gardner, D., Gardner E. P., Goldberg, J. H., Helmstaedter, M., Hestrin, S., Karube, F., Kisvarday, Z. F., Lambolez, B., Lewis, D. A., Marin, O., Markram, H., Munoz, A., Packer, A., Petersen, C. C., Rockland, K. S., Rossier, J., Rudy, B., Somogyi, P., Satiger, J. F., Tamas, G., Thomson, A. M., Toledo-Rodriguez, M., Wang, Y., West, D. C., and Yuste, R. (2008) Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat. Rev. Neurosci. 9, 557-568.
Barot, S. K., Chung, A., Kim, J. J., and Bernstein, I. L. (2009) Functional imaging of stimulus convergence in amygdalar neurons during Pavlovian fear conditioning. PLoS One 4, e6156.
Berton, O., McClung, C. A., Dileone, R. J., Krishnan, V., Renthal, W., Russo, S. J., Graham, D., Tsankova, N. M., Bolanos, C. A., Rios, M., Monteggia, L. M., Self, D. W., and Nestler, E. J. (2006) Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science 311, 864-868.
Berton, O., Covington, H. E. 3rd., Ebner, K., Tsankova, N. M., Carle, T. L., Ulery, P., Bhonsle, A., Barrot, M., Krishnan, V., Singewald, G. M., Singewald, N., Birnbaum, S., Neve, R. L., and Nestler, E. J. (2007) Induction of FosB in the periaqueductal gray by stress promotes active coping responses. Neuron 55, 289-300.
Bevins, R. A. and Besheer, J. (2006) Object recognition in rats and mice: a one-trial non-matching-to-sample learning task to study 'recognition memory'. Nat. Protoc. 1, 1306-1311.
Borta, A.,Wöhr, M., and Schwarting, R. K. (2006) Rat ultrasonic vocalization in aversively motivated situations and the role of individual differences in anxiety-related behavior. Behav. Brain Res. 166, 271-280.
Brinley-Reed, M. and McDonald, A. J. (1999) Evidence that dopaminergic axons provide a dense innervation of specific neuronal subpopulations in the rat basolateral amygdala. Brain Res. 850, 127-135.
Bush, D. E., Sotres-Bayon, F., and LeDoux, J. E. (2007) Individual differences in fear: isolating fear reactivity and fear recovery phenotypes. J. Trauma. Stress 20, 413-422.
Burgos-Robles, A., Vidal-Gonzalez, I., and Quirk, G. J. (2009) Sustained conditioned responses in prelimbic prefrontal neurons are correlated with fear expression and extinction failure. J. Neurosci. 29, 8474-8482.
Chang, C. H., Berke, J. D., and Maren, S. (2010) Single-unit activity in the medial prefrontal cortex during immediate and delayed extinction of fear in rats. PLoS One 5, e11971.
Choi, D. C., Maquschak, K. A., Ye, K., Jang, S. W., Myers, K. M., and Ressler, K. J. (2010) Prelimbic cortical BDNF is required for memory of learned fear but not extinction or innate fear. Proc. Natl. Acad. Sci. USA. 107, 2675-2680.
Conner, J. M., Lauterborn, J. C., Yan, Q., Gall, C. M., and Varon, S. (1997) Distribution of brain-derived neurotrophic factor (BDNF) protein and mRNA in the normal adult rat CNS: evidence for anterograde axonal transport. J. Neurosci. 17, 2295-2313.
Courtin, J. Chaudun F., Rozeske R. R., Karalis N., Gonzalez-Campo C., Wurtz H., Abdi A., Baufreton J., Bienvenu T. C., and Herry C. (2014) Prefrontal parvalbumin interneurons shape neuronal activity to drive fear expression. Nature 505, 92-96.
Danjo, T., Yoshimi, K., Funabiki, K., Yawata, S., and Nakanishi, S. (2014) Aversive behavior induced by optogenetic inactivation of ventral tegmental area dopamine neurons is mediated by dopamine D2 receptors in the nucleus accumbens. Proc. Natl. Acad. Sci. USA. 111, 6455-6460.
Davis, M. and Whalen, P. J. (2001) The amygdala: vigilance and emotion. Mol. Psychiatry 6, 13-34.
Ehrlich, I., Humeau, Y., Gremier, F., Ciocchi, S., Herry, C., and Luthi, A. (2009) Amygdala inhibitory circuits and the control of fear memory. Neuron 62, 757-771.
Faber, E. S. L., Callister, R. J., and Sah, P. (2001) Morphological and electrophysiological properties of principal neurons in the rat lateral amygdala in vitro. J. Neurophysiol. 85, 714-723.
Fanselow, M. S. and LeDoux, J. E. (1999) Why we think plasticity underlying Pavlovian fear conditioning occurs in the basolateral amygdala. Neuron 23, 229-232.
Fanselow, M. S. and Poulos, A. M. (2005) The neuroscience of mammalian associative learning. Annu. Rev. Psychol. 56, 207-234.
Farovik, A., Dupont, L.M., and Eichenbaum, H. (2011) Distinct roles for dorsal CA3 and CA1 in memory for sequential nonspatial events. Learn. Mem. 17, 12-17.
Feder, A., Nestler, E. J., and Charney, D. S. (2009) Psychobiology and molecular genetics of resilience. Nat. Rev. Neurosci. 10, 446-457.
Felmingham, K., Kemp, A., Williams, L., Das., P., Hughes, G., Peduto, A., and Bryant, R. (2007) Changes in anterior cingulate and amygdala after cognitive behavior therapy of posttraumatic stress disorder. Psychol. Sci. 18, 127-129.
Franklin, K. and Paxinos, G. (2008) The mouse brain in stereotaxic coordinates. San Diego: Elsevier Academic Press.
Gale, G. D., Anagnostaras, S. G., Godsil, B. P., Mitchell, S., Nozawa, T., Sage, J. R., Wiltgen, B., and Fanselow, M. S. (2004) Role of the basolateral amygdala in the storage of fear memories across the adult lifetime of rats. J. Neurosci. 24, 3810-3815.
Goosens, K. A. and Maren, S. (2001) Contextual and auditory fear conditioning are mediated by the lateral, basal, and central amygdaloid nuclei in rats. Learn. Mem. 8, 148-155.
Goosens, K. A., Hobin, J. A., and Maren, S. (2003) Auditory-evoked spike firing in the lateral amygdala and Pavlovian fear conditioning: mnemonic code or fear bias? Neuron 40, 1013-1022.
Haglund, M. E., Nestadt, P. S., Cooper, N. S., Southwick, S. M., and Charney, D. S. (2007) Psychobiological mechanisms of resilience: relevance to prevention and treatment of stress-related psychopathology. Dev. Psychopathol. 19, 889-920.
Hardouin, S. N., Richmond, K. N., Zimmerman, A., Hamilton, S. E., Feigl, E. O., and Nathanson, N. M. (2002) Altered cardiovascular responses in mice lacking the M1 muscarinic acetylcholine receptor. J. Pharmacol. Exp. Ther. 301, 129-137.
Heidbreder, C. A. and Groenewegen, H. J. (2003) The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neurosci. Biobehav. Rev. 27, 555-579.
Herry, C., Ciocchi, S., Senn, V., Demmou, L., Müller, C., and Lüthi, A. (2008) Switching on and off fear by distinct neuronal circuits. Nature 454, 600-606.
Herry, C., Ferraguti, F., Singewald, N., Letzkus, J. J., Ehrlich, I., and Lüthi, A. (2010) Neuronal circuits of fear extinction. Eur. J. Neurosci. 31, 599-612.
Holmes, A. and Singewald, N. (2013) Individual differences in recovery from traumatic fear. Trends Neurosci. 36, 23-31.
Hoover, W. B. and vertes, R. P. (2007) Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Struct. Funct. 212, 149-179.
Huang, Y. F., Yang, C. H., Huang, C. C., and Hsu, K. S. (2012) Vascular endothelial growth factor-dependent spinogenesis underlies antidepressant-like effects of enriched environment. J. Biol. Chem. 287, 40938-40955.
Jang, S. W., Liu, X., Yepes, M., Shepherd, K. R., Miller, G. W., Liu, Y., Wilson, W. D., Xiao, G., Blanchi, B., Sun, Y. E., and Ye, K. (2010) A selective TrkB agonist with potent neurotrophic activities by 7, 8-dihydroxyflavone. Proc. Natl. Acad. Sci. U.S.A. 107, 2687-2692.
Johansen, J. P., Cain, C. K., Ostroff, L. E., and LeDoux, J. E. (2011) Molecular mechanisms of fear learning and memory. Cell 147, 509-524.
Jones, B. F., Groenewegen, H. J., and Witter, M. P. (2008) Intrinsic connections of the cingulated cortex in the rat suggest the existence of multiple functionally segregated networks. Neurosci. 133, 193-207.
Jumrussirikul, P., Dinerman, J., Dawson, T. M., Dawson, V. L., Ekelund, U., Georgakopoulos, D., Schramm, L. P., Calkins, H., Snyder, S. H., Hare, J. M., and Berger, R. D. (1998) Interaction between neuronal nitric oxide synthase and inhibitory G protein activity in heart regulation in conscious mice. J. Clin. Invest. 102, 1279-1285.
Knapska, E., Macias, M., Mikosz, M., Nowak, A., Owczarek, D., Wawrzyniak, M., Pieprzyk, M., Cymerman, I. A., Werka, T., Sheng, M., Maren, S., Jaworski, J., and Kaczmarek, L. (2012) Functional anatomy of neural circuits regulating fear and extinction. Proc. Natl. Acad. Sci. USA. 109, 17093-17098.
Koda, K., Ago, Y., Cong, Y., Kita, Y., Takuma, K., and Matsuda, T., (2010.) Effects of acute and chronic administration of atomoxetine and methylphenidate on extracellular levels of noradrenaline, dopamine and serotonin in the prefrontal cortex and striatum of mice. J. Neurochem. 114, 259-270.
Krishnan, V., Han, M.H., Graham, D. L., Berton, O., Renthal, W., Russo, S. J., Laplant, Q., Graham, A., Lutter, M., Lagace, D. C., Ghose, S., Reister, R., Tannous, P., Green, T. A., Neve, R. L., Chakravarty, S., Kumar, A., Eisch, A. J., Self, D. W., Lee, F. S., Tamminga, C. A., Cooper, D. C., Gershenfeld, H. K., and Nestler, E. J. (2007) Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell 131, 391-404.
Krishnan, V., Han, M. H., Mazei-Robison, M., Iñiguez, S. D., Ables, J. L., Vialou, V., Berton, O., Ghose, S., Covington, H. E. 3rd, Wiley, M. D., Henderson, R. P., Neve, R. L., Eisch, A. J., Tamminga, C. A., Russo, S. J., Bolaños, C. A., and Nestler, E. J. (2008) AKT signaling within the ventral tegmental area regulates cellular and behavioral responses to stressful stimuli. Biol. Psychiatry 64, 691-700.
Kumar, S., Hultman, R., Hughes, D., Michel, N., Katz, B. M., and Dzirasa, K. (2014) Prefrontal cortex reactivity underlies trait vulnerability to chronic social defeat stress. Nat. Commun. 5, 4537.
Laurent, V. and Westbrook, R. F. (2009) Inactivation of the infralimbic but not the prelimbic cortex impairs consolidation and retrieval of fear extinction. Learn. Mem. 16, 520-529.
LeDoux, J. E., Iwata, J., Cicchetti, P., and Reis, D. J. (1988) Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of condirioned fear. J. Neurosci. 8:2517-2529.
LeDoux, J. E. (2000) Emotion circuits in the brain. Annu. Rev. Neurosci. 23, 155-184.
LeDoux, J. (2003) The emotional brain, fear , and the amygdala. Cell Mol. Neurobio. 23, 727-738
Letzkus, J. J. Wolff, S. B., Meyer, E. M., Tovote, P., Courtin, J., Herry, C., and Lüthi, A. (2011) A disinhibitory microcircuit for associative fear learning in the auditory cortex. Nature 480, 331-335.
Li, C., Dabrowska, J., Hazra, R., and Rainnie, D. G. (2011) Synergistic activation of dopamine D1 and TrkB receptors mediate gain control of synaptic plasticity in the basolateral amygdala. PLos One 6, e26065.
Linden, D. E. (2006) How psychotherapy changes the brain-the contribution of functional neuroimaging. Mol. Psychiatry 11, 528-538.
Livneh, U. and Paz, R. (2012) Amygdala-prefrontal synchronization underlies resistance to extinction of aversive memories. Neuron 75, 133-142.
Mahan, A. L. and Ressler, K. J. (2012) Fear conditioning, synaptic plasticity and the amygdala: implications for posttraumatic stress disorder. Trends Neurosci. 35, 24-35.
Maren, S. (2001) Neurobiology of Pavlovian fear conditioning. Annu. Rev. Neurosci. 24, 897-931.
Maren, S. and Quirk, G. J. (2004) Neuronal signaling of fear memory. Nat. Rev. Neurosci. 5, 844-852
Mayberg, H. S. (2009) Targeted electrode-based modulation of neural circuits for depression. J. Clin. Invest. 119, 717-725.
McDonald, A. J. (1982) Neurons of lateral and basolateral amygdaloid nuclei: A golgo study in the rat. J. Comp. Neurol. 212, 293-312.
McDonald, A. J. (1998) Cortical pathways to the mammalian amygdala. Prog. Neurobiol. 55, 257-332.
McDonaald, A. J. and Mascagni, F. (2001) Colocalization of calcium-binding proteins and GABA in neurons of the rat basolateral amygdala. Neurosci. 105, 681-693.
McEwen, B. S. and Gianaros, P. J. (2011) Stress- and allostasis-induced brain plasticity. Annu. Rev. Med. 62, 431-445.
McGaugh, J. L. and Roozendaal, B. (2002) Role of adrenal stress hormones in forming lasting memories in the brain. Curr. Opin. Neurobiol. 12, 205-210.
Meis, S., Endres, T., and Lessmann, V. (2012) Postsynaptic BDNF signaling regulates long-term potentiation at thalamo-amygdala afferents. J. Physiol. 590, 193-208.
Mineka, S. and Zinbarg, R. (2006) A contemporary learning theory perspective on the etiology of anxiety disorders: it's not what you thought it was. Am. Psychol. 61, 10-26.
Murrough, J. W., Iacoviello, B., Neumeister, A., Charney, D. S., and Iosifescu, D. V. (2011) Cognitive dysfunction in depression: neurocircuitry and new therapeutic strategies. Neurobiol. Learn. Mem. 96, 553-563.
Myers, K. M. and Davis, M. (2007) Mechanisms of fear extinction. Mol. Psychiatry 12, 120-150.
Nock, M. K., Hwang, I., Sampson, N. A., and Kessler, R. C. (2010) Mental disorders, comorbidity and suicidal behavior: results from the National Comorbidity Survey Replication. Mol. Psychiatry 15, 868-876.
Oo, T. F, Marchionini, D. M., Yarygina, O., O’Leary, P. D., Hughes, R. A., Kholodilov, N., and Burke, R. E. (2009) Brain-derived neurotrophic factor regulates early postnatal development cell death of dopamine neurons of the substantia nigra in vivo. Mol. Cell Neurosci. 41, 440-447.
Orsini, C. A., Kim, J. H., Knapska, E., and Maren, S. (2011) Hippocampal and prefrontal projections to the basal amygdala mediate contextual regulation of fear after extinction. J. Neurosci. 31, 17269-17277.
Ou, L. C. and Gean, P. W. (2007) Transcriptional regulation of brain-derived neurotrophic factor in the amygdala during consolidation of fear memory. Mol. Pharmacol. 72, 350-358.
Parsons, R. G. and Ressler K. J. (2013) Implications of memory modulation for post-traumatic stress and fear disorders. Nat. Neurosci. 16, 146-153.
Peters, J., Dieppa-Perea, L. M., Melendez, L. M., and Quirk G. J. (2010) Induction of fear extinction with hippocampal-infralimbic BDNF. Science 328, 1288-1290.
Phelps, E. A. and LeDoux, J. E. (2005) Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron 48, 175-187.
Pitkänen, A., Pikkarainen, M., Nurminen, N., and Ylinen, A. (2000) Reciprocal connections between the amygdala and the hippocampal formation, perirhinal cortex, and postrhinal cortex in rat. A review. Ann. N. Y. Acad. Sci. 911, 369-391.
Porsolt, R. D., Le Pichon, M., and Jalfre, M. (1977) Depression: a new animal model sensitive to antidepressant treatments. Nature 266, 730-732.
Price, J. L. and Drevets, W. C. (2010) Neurocircuitry of mood disorders. Neuropsychopharmacology 35, 192-216.
Quirk, G. J., Armony, J. L., and LeDoux, J. E. (1997) Fear conditioning enhances different temporal components of tone-evoked spike trains in auditory cortex and lateral amygdala. Neuron 19, 613-624.
Quirk, G. J. and Mueller, D. (2008) Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology 33, 56-72.
Rattiner, L. M., Davis, M., French, C. T., and Ressler, K.J. (2004) Brain-derived neurotrophic factor and tyrosine kinase receptor B involvement in amygdala-dependent fear conditioning. J. Neurosci. 24, 4796-4806.
Repa, J. C., Muller, J., Apergis, J., Desrochers, T. M., Zhou, Y., and LeDoux, J. E. (2001) Two different lateral amygdala cell populations contribute to the initiation and storage of memory. Nat. Neurosci. 4, 724-731.
Rodrigues, S. M., Schafe, G. E., and LeDoux, J. E. (2004) Molecular mechanisms underlying emotional learning and memory in the lateral amygdala. Neuron 44, 75-91.
Romanski, L. M., Clugnet, M. C., Bordi, F., and LeDoux, J. E. (1993) Somatosensory and auditory convergence in the lateral nucleus of the amygdala. Behav. Neurosci. 107, 444-450.
Russo, S. J., Murrough, J. W., Han, M. H., Charney, D. S., and Nestler, E. J. (2012) Neurobiology of resilience. Nat. Neurosci. 15:1475-1484.
Schiller, D., Levy, I., Niv, Y., LeDoux, J. E., and Phelps, E. A. (2008) From fear to safety and back: reversal of fear in the human brain. J. Neurosci. 28, 11517-11525.
Senn, V., Wolff, S. B., Herry, C., Grenier, F., Ehrlich, I., Gründemann, J., Fadok, J. P., Müller, C., Letzkus, J. J., and Lüthi, A. (2014) Long-range connectivity defines behavioral specificity of amygdala neurons. Neuron 81, 428-437.
Sierra-Mercado, D., Padilla-Coreano, N., and Quirk, G. J. (2011) Dissociable roles of prelimbic and infralimbic cortices, ventral hippocampus, and basolateral amygdala in the expression and extinction of conditioned fear. Neuropsychopharmacology 36, 529-538.
Smith, Y., Pare, J. F., and Pare, D. (1998) Cat intraamygdaloid inhibitory network: ultrastructural organization of parvalbumin-immunoreactive elements. J. Comp. Neurol. 391, 164-179.
Smith, Y., Pare, J. F., and Pare, D. (2000) Differential innervation of parvalbumin-immunoreactive interneurons of the basolateral amygdaloid complex by cortical and intrinsic inputs. J. Comp. Neurol. 416, 496-508.
Song, C., Ehlers, V. L., and Moyer, J. R. Jr. (2015) Trace fear conditioning differentially modulates intrinsic excitability of medial prefrontal cortex-basolateral complex of amygdala projection neurons in infralimbic and prelimbic cortices. J. Neurosci. 35, 13511-13524.
Spampanato, J. Polepalli, J. and Sah, P. (2011) Interneurons ii the basolateral amygdala. Neuropharmacol. 60, 765-773.
Steru, L., Chermat, R., Thierry, B., and Simon, P. (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology 85, 367-370.
Takeu, S., Morinobu, S., Yamamoto, S., Fuchikami, M., Matsumoto, T., and Yamawaki, S. (2011) Enhanced hippocampal BDNF/TrkB signaling in response to fear conditioning in an animal model of posttraumatic stress disorder. J. Psychiatr. Res. 45, 460-468.
Tang, J., Wagner, S., Schachner, M., Dityatev, A., and Wotjak, C. T. (2003) Potentiation of amygdaloid and hippocampal auditory-evoked potentials in a discriminatory fear-conditioning task in mice as a function of tone pattern and context. Eur. J. Neurosci. 18, 639-650.
Tovote, P., Fadok, J. P., and Lüthi, A. (2015) Neuronal circuits for fear and anxiety. Nat. Rev. Neurosci. 16, 317-331.
Tully, K., Li, Y., Tsvetkov, E., and Bolshakov, V.Y. (2007) Norepinephrine enables the induction of associative long-term potentiation at thalamo-amygdala synapses. Proc. Natl. Acad. Sci. USA. 104, 14146-14150.
Turner, B. H. and Herkenham, M. (1991) Thalamoamygdaloid projections in the rat: a test of the amygdala's role in sensory processing. J. Comp. Neurol. 313, 295-325.
Ulrich-Lai, Y. M. and Herman, J. P. (2009) Neural regulation of endocrine and autonomic stress responses. Nat. Rev. Neurosci. 10, 397-409.
Van de Kar, L. D., Piechowski, R. A., Rittenhouse, P. A., and Gray, T. S. (1991) Amygdaloid lesuins: Differential effect on conditioned stress and immobilization-induced increases in corticosterone and rennin secretion. Neuroendocrinology 54, 89-95.
van Tol, M. J., Demenescu, L. R., van der Wee, N. J., Kortekaas, R., Marjan, M. A. N., Boer, J. A., Renken, R. J., van Buchem, M. A., Zitman, F. G., Aleman, A., and Veltman, D. J. (2012) Functional magnetic resonance imaging correlates of emotional word encoding and recognition in depression and anxiety disorders. Biol. Psychiatry 71, 593-602.
Vertes, R. P. (2004) Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse 51, 32-58.
Vialou, V., Maze, I., Renthal, W., LaPlant, Q. C., Watts, E. L., Mouzon, E., Ghose, S., Tamminga. C. A., and Nestler, E. J. (2010) FosB in brain reward circuits mediates resilience to stress and antidepressant responses. Nat. Neurosci. 13, 745-752.
Washburn, M. S. and Moises, H. C. (1992) Electrophysiological and morphological properties of rat basolateral amygdaloid neurons in vitro. J. Neurosci. 12, 4066-4079.
Weinberger, N. M. (2011) The medial geniculate, not the amygdala, as the root of auditory fear conditioning. Hear. Res. 274, 61-74.
Yang, C. H., Huang, C. C., and Hsu, K. S. (2012) A critical role for protein tyrosine phosphatase nonreceptor type 5 in determining individual susceptibility to develop stress-related cognitive and morphological changes. J. Neurosci. 32, 7550-7562.
Yizhar, O., Fenno, L. E., Davidson, T. J., Mogri, M., and Deisseroth, K. (2011) Optogenetics in neural systems. Neuron 71, 9-34.
校內:2021-08-01公開