簡易檢索 / 詳目顯示

研究生: 吳資彬
Wu, Tz-Bin
論文名稱: 瀝青混凝土介電性質與工程性質之關係
Relationship Between Dielectric and Engineering Properties of Hot-Mix Asphalt Mixtures
指導教授: 陳建旭
Chen, Jian-shiuh
張介民
Chang, Chieh-min
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 231
中文關鍵詞: 瀝青混凝土密度介電常數非破壞性測量
外文關鍵詞: Non- destructive Measurement, Dielectric Constant, Density, Asphalt Concrete
相關次數: 點閱:70下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究量測瀝青混凝土介電常數並探討影響瀝青混凝土介電性質之因素,藉介電常數值建立與密度之關係,同時發展瀝青混凝土介電常數預測密度之模型。此外,評估非破壞性密度檢測運用於鋪面施工之品質控制,使其在工程上具應用價值。實驗室介電量測使用終端開路同軸探棒(Open-Ended Coaxial Probe)量測瀝青、粒料及瀝青混凝土試體之介電性質,因介電性質為電場頻率之函數,以7GHz頻率建立孔隙率、瀝青含量、溫度、含水率與介電常數之間的關係,結果顯示孔隙率每增加1%,瀝青混凝土試體介電常數值降低0.07。在相同孔隙率範圍,瀝青含量增加,介電常數降低。若水存在於瀝青混凝土孔隙中,受水分子極化機制影響,介電常數與損失因子隨含水率的提高而增加。在密度預測模型方面,以介電混合理論模型為基礎,由瀝青混凝土各組成成分及體積分率計算介電常數值,並與瀝青混凝土整體介電常數實驗量測值比較。最後利用瀝青混凝土試體孔隙率、瀝青含量以及介電常數進行迴歸分析,建立密度預測模型,密度預測值與實驗值之相關性R2為0.94,此模型將有助於發展非破壞性瀝青混凝土密度檢測。

    關鍵字:瀝青混凝土、密度、介電常數、非破壞性測量

    This study describes dielectric properties of asphalt concrete and establishes the relationship between dielectric constant and density of asphalt concrete. By doing so, the dielectric model for predicting density from dielectric constant is established. Besides, this study also aims to evaluate the application of non-destructive density measurement to pavement construction and its quality control in order to increase its practical utility on construction. An open-ended coaxial probe is used for measuring the dielectric properties of bitumen, aggregate, and asphalt concrete specimens. 7GHz frequency is accessible to establish the relationship between porosity, bitumen content, temperature, moisture content, and dielectric constant. The results showed that every increase of 1 percent porosity led to a decrease in the value of dielectric constant to 0.07. Moreover, in the same porosity, the dielectric constant decreases with the increase of bitumen content for asphalt concrete specimens. If water exists in the pores of the asphalt concrete, water molecules would be affected by the polarization mechanism, and therefore dielectric constant and loss factor raise with the increase of moisture content. As for density prediction model, based on dielectric mixing theoretical model, the dielectric constant value of asphalt concrete is calculated by the constituent and volume fraction of asphalt concrete, and is compared with measured value as well. A multiple nonlinear regression model is developed to relate the porosity, bitumen content, and the dielectric constant of the specimens at 7GHz. The statistical analysis indicates that the regression model is highly significant. This model will contribute to the development of non-destructive testing of density of asphalt concrete.
    Keyword: Asphalt Concrete, Density, Dielectric Constant, Non-destructive Measurement.

    摘 要 I Abstract II 誌 謝 III 目 錄 IV 表 目 錄 VIII 圖 目 錄 IX 第一章 緒論 1.1 前言 1-1 1.2 研究動機 1-3 1.3 研究目的 1-4 1.4 研究範圍 1-4 第二章 文獻回顧 2.1 基本理論 2-1 2.1.1 介電常數 2-1 2.1.2 極化機制 2-9 2.1.3 介電損失 2-13 2.1.4 電磁波在介質中之傳播 2-13 2.2 影響介電常數之因素 2-16 2.2.1 密度與介電常數之間的關係 2-18 2.2.2 水分對介電常數的影響 2-28 2.2.3 溫度對介電常數的影響 2-36 2.3 瀝青混凝土介電模型的發展 2-39 2.4 介電性質之量測技術 2-45 第三章 研究計畫 3.1 研究方法 3-2 3.2 試驗材料 3-4 3.2.1 瀝青膠泥 3-4 3.2.2 粒料與級配 3-4 3.3 試驗方法與設備 3-6 3.3.1 SGC迴轉圈數與孔隙率關係 3-6 3.3.2 旋轉式壓實儀 3-7 3.3.3 試體準備 3-8 3.3.4 試體面乾內飽和密度及孔隙率量測 3-9 3.3.5 試體含水率量測 3-10 3.4 介電常數量測儀器與方法 3-11 3.4.1 量測儀器與校正 3-11 3.4.2 電磁波之頻率範圍 3-17 3.4.3 瀝青黏結料之介電常數量測 3-17 3.4.4 粒料之介電常數量測 3-18 3.4.5 瀝青混凝土試體之介電常數量測 3-20 第四章 試驗結果與討論 4.1 基本物性試驗 4-2 4.1.1 瀝青黏結料基本特性 4-2 4.1.2 粒料基本特性 4-3 4.2 介電常數量測 4-4 4.2.1 瀝青之介電常數測量 4-4 4.2.2 粒料之介電常數測量 4-9 4.3 瀝青混凝土之介電常數 4-16 4.3.1 頻率對於瀝青混凝土介電常數之影響 4-16 4.3.2 孔隙率對於瀝青混凝土介電常數之影響 4-20 4.3.3 密度對於瀝青混凝土介電常數之影響 4-24 4.3.4 瀝青含量對於瀝青混凝土介電常數之影響 4-29 4.3.5 溫度對於瀝青混凝土介電常數之影響 4-31 4.3.6 含水率對於瀝青混凝土介電常數之影響 4-33 4.4 介電混合模型 4-36 4.5 密度預測模型 4-40 第五章 結論與建議 5.1 結論 5-1 5.2 建議 5-4 參考文獻 附錄 附錄A 瀝青混凝土介電性質與頻率之關係 附-1 附錄B 瀝青混凝土介電性質與孔隙率之關係 附-35 附錄C 瀝青混凝土介電性質與密度之關係 附-44 附錄D 瀝青混凝土介電性質與瀝青含量之關係 附-53 附錄E 瀝青混凝土介電性質與含水率之關係 附-59 附錄F 瀝青混凝土介電混合模型 附-61 委員問題與建議 自述

    許桂銘、 陳偉全(2004)「水泥混凝土再生骨材優質化技術之研究」,第六屆鋪面材料再生學術研討會論文集,第B2-1~B2-9頁,高雄鳥松。

    黃安斌、林志平、廖志中、潘以文、湯士弘、簡旭君、吳政達、葉致翔、盧吉勇、楊培熙 (2002) 「先進邊坡監測系統之研發」,土木水利,第19卷,第2期,第65-78 頁。

    龔中麟、徐承和 (1996) 近代電磁理論,凡異出版社,新竹。

    Agilent Technologies (2003). Basics of Measuring the Dielectric Properties of Materials, Application Note, Agilent Literature Number 5989-2589EN.

    Agilent Technologies (2005). Agilent 85070E Dielectric Probe Kit 200MHz to 50GHz, Application Note, Agilent Literature Number 5989-0222EN.

    Al-Qadi, I.L., Lahouar, S., and Loulizi, A. (2001). “In-Situ Measurements of Hot-Mix Asphalt Dielectric Properties,” Journal of Non-Destructive Testing and Evaluation, Vol.34, No.6, pp.427-434.
    Al-Qadi, I.L., Lahouar, S., and Loulizi, A. (2005). Ground-Penetrating Radar Calibration at the Virginia Smart Road and Signal Analysis to Improve Prediction of Flexible Pavement Layer Thicknesses, Virginia Tech Transportation Institute, Report No. FHWA/VTRC 05-CR7,Blacksburg, VA.

    Birchak, J. R., Gardner, C.G., Hipp, J.E., and Victor, J.M. (1974). “High Dielectric Constant Microwave Probes for Sensing Soil Moisture,” Proceedings of the IEEE, Vol.62, pp.93-98.

    Bottcher, C. J. F., and Bordewijk, P. (1973). Theory of Electric Polarization, 2nd Ed., Vol.2, Elsevier Science, New York.

    Buyukozturk, O. (1996). “Electromagnetic Properties of Concrete and Their Significance in Nondestructive Testing,” Transportation Research Record 1574, pp.10-17.

    Campbell, M. J., and Ulrichs, J. (1969). “Electrical Properties of Rocks and their Significance for Lunar Radar Observations,” Journal of Geophysical Research, Vol.74, pp.5867-5881.

    Clipper Controls Inc. (2005). Dielectric Constant Reference Guide, http://www.clippercontrols.com/info/dielectric_constants.html, Clipper Controls Inc., viewed 12 July 2007.

    Davis, J.L., Rossiter, J.R., Mesher, D.E., and Dawley, C.B. (1994). “Quantitative Measurement of Pavement Structures Using Radar,” Proceedings of the 5th International Conference on Ground Penetrating Radar, Kitchener, Ontario, pp.319-334.

    Daniels, D. J. (2004). Ground Penetrating Radar, 2nd edition. The Institution of Electrical Engineers, London.

    Design Manual for Roads and Bridges (DMRB), Volume 7: Pavement Design and Maintenance. The Stationary Office, London, 2006.

    Evans, R., Frost, M., Stonecliffe-Jones, M., and Dixon, N. (2006). “Assessment of The In-Situ Dielectric Constant of Pavement Material,” TRB 2007 Annual Meeting CD-ROM., Transportation Research Board of the National Academies, Washington, D.C..

    , H. (1949). Theory of Dielectrics: Dielectric Constant and Dielectric Loss, Clarendon Press, Oxford.

    Haddad , R.H. and Al-Qadi, I.L. (1998). “Characterization of Portland Cement Concrete Using Electromagnetic Waves Over The Microwave Frequencies.” Cement and Concrete Research, Vol.28, No.10, pp.1379-1391.

    Hippel, A. (1954). Dielectric and Waves, Wiley, New York.
    Hippel, A., ed. (1957). Dielectric Materials and Applications, M.I.T. Press and Wiley, New York.

    Jaselskis, E.J., Grigas, J., and Brilingas, A. (2003). “Dielectric Properties of Asphalt Pavement,” Journal of Materials in Civil Engineering, Vol.15, No.5, pp.427-434.

    Kandhal, P.S. and Koehler, W.C. (1984). “Pennsylvania’s Experience in the Compaction of Asphalt Pavement,” Placement and Compaction of Asphalt Mixture STP 829, F.T. Wagner, Ed., ASTM, Philadelphia, PA., pp.93-106.

    Kent, M. (1977). “Complex Permittivity of Fish Meal: A General Discussion of Temperature, Density, and Moisture Dependence,” Journal of Microwave Power, Vol.12, No.4, pp.341-345.

    Kingery, W. D., Bowen, H. K., and Uhlmann, D. R. (1976). Introduction to Ceramics, John Wiley and Sons, New York.

    Kneubuhl, F. K. (1989). “Review on the Theory of the Dielectric Dispersion of Insulators,” Infrared Physics, Vol.29, No.6, pp.925-942.

    Kraszewski, A. (1997). Microwave Aquametry. IEEE, Piscataway, N.J.

    Landau, L.D., and Lifshitz, E.M. (1960). Electrodynamics of Continuous Media, Pergamon Press, Oxford.

    Loyenga, H. (1965). “Dielectric Constants of Heterogeneous Mixtures,” Physical, Vol.31, pp.401-406.

    Mandel, M., and Odijk, T. (1984). “Dielectric Properties of Polyelectrolyte Solutions,” Annual Review of Physical Chemistry, Vol.35, pp.75-108.

    , C. (1998). “Microwave Permittivity of Dry Sand,” IEEE Transactions and Remote Sensing, Vol.36, No.1, pp.317-319.

    McMahon, E. J. (1983). Engineering Dielectrics, American Society for Testing Material, Philadelphia.

    Nelson, S.O., and You, T.S. (1990). “Relationships between Microwave Permittivities of Solid and Pulverised Plastics,” Journal of Physics D: Applied Physics, Vol.23, pp.346-353.

    Nelson, S.O. (1992). “Microwave Dielectric Properties of Fresh Onions,” Transactions of the ASAE, Vol.35, pp.963-967.

    Nelson, S.O., and Bartley, P.G. (1998). “Open-Ended Coaxial-Line Permittivity Measurements on Pulverized Materials,” IEEE Transactions on Instrumentation and Measurement, Vol.47, No.1, pp.133-137.

    Nelson, S.O. (2004). “Dielectric Properties and Density Relationships for Granular Materials,” An ASAE/CSAE Meeting Presentation, Paper Number: 046088.

    Nettelblad, B., and Niklasson, G. A. (1996). "The Dielectric Dispersion of Liquid Filled Porous Sintered Materials," Journal of Physics: Condensed Matter, Vol.8, pp.2781-2790.

    Olhoeft, G.R., and Strangway, D.W. (1975). “Dielectric Properties of the First 100 Meters of the Moon,” Earth and Planetary Science Letters, Vol.24, No.3, pp.394-404.

    Rusiniak, L. (1998). “Dielectric constant of water in a porous rock medium,” Physics and Chemistry of the Earth, Vol.23, pp.1133-1139.

    Saarenketo, T. (1997). “Using Ground-Penetrating Radar and Dielectric Probe Measurements in Pavement Density Quality Control,” Transportation Research Record 1575, pp.34-41.

    Sarabandi, K., Li, E.S., and Nashashibi, A. (1997). “Modeling and Measurements of Scattering from Road Surfaces at Millimeter-Wave Frequencies,” IEEE Transactions on Antennas Propagation, Vol.45, No.11, pp.1679-1688.

    Scherocman, J.A. and Martenson, E.D. (1984). “Placement of Asphalt Concrete Mixtures,” Placement and Compaction of Asphalt Mixture STP 829, F.T. Wagner, Ed., ASTM, Philadelphia, PA., pp.3-27.

    Shang, J.Q. (2002). “Effects of Asphalt Pavement Properties on Complex Permittivity,” International Journal of Pavement Engineering, Vol.3, No.4, pp. 217-226.

    Shang, J.Q., Umana, J.A., Bartlett, F.M., and Rossiter, J.R. (1999). “Measurement of Complex Permittivity of Asphalt Pavement Materials,” Journal of Transportation Engineering, Vol.125, No.4, pp.347-356.

    Shang, J.Q., and Umana, J.A. (1999). “Dielectric Constant and Relaxation Time of Asphalt Pavement Materials,” Journal of Infrastructure Systems, Vol.5, No.4, pp.135-142.

    Shen, L.C., Savre, W.C., Price, J.M., and Athavale, K. (1985). “Dielectric Properties of Reservoir Rocks at Ultra-High Frequencies,” Geophysics, Vol.50, pp.692-704.
    Subedi, P., and Chatterjee, I. (1993). “Dielectric Mixture Model for Asphalt-Aggregate Mixtures,” Journal of Microwave Power and Electromagnetic Energy, Vol.28, pp.68-72.

    Topp, G.C., Davis, J.L., and Annan, A.P. (1980). “Electromagnetic Determination of Soil Water Content: Measurements in Coaxial Transmission Lines,” Water Resources Research, Vol.16, pp.574-582.

    Ulaby, F.T., Bengal, T.H., Dobson, M.C., East, J.R., Garvin, J.B., and Evans, D.L. (1990). “Microwave Dielectric Properties of Dry Rocks,” IEEE Transactions on Geoscience and Remote Sensing, Vol.28, No.3, pp.325-336.

    Venkatesh, M.S. and Raghavan, G.S.V. (2005). “An Overview of Dielectric Properties Measuring Techniques,” Canadian Biosystems Engineering, Vol.47, pp.7.15-7.30.

    Willet, D. A., and Rister, B. (2005). Ground penetrating radar pavement layer thickness evaluation, Kentucky Transport Center, Research Report KTC-02-29/FR101-00-1F, Lexington, KY.

    下載圖示 校內:2011-08-08公開
    校外:2011-08-08公開
    QR CODE