簡易檢索 / 詳目顯示

研究生: 黃奕凱
Huang, Yi-Kai
論文名稱: 奈米球鏡微影術製作金奈米網陣列應用於高靈敏介電係數感測器
Highly sensitive refractive index sensors with Gold nanohole arrays fabricated using Nanospherical-Lens Lithography
指導教授: 張允崇
Chang, Yun-Chorng
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 91
中文關鍵詞: 奈米球鏡微影術侷域性表面電漿共振電漿感測器
外文關鍵詞: Nanospherical-Lens Lithography, Localized surface plasmon resonance, Plasmonic sensor
相關次數: 點閱:159下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 於本論文中,我們以奈米球鏡微影術製作金奈米網陣列結構,並以分光光譜儀分析金奈米網陣列結構的光學特性,藉著改變金奈米網陣列的參數如週期性、奈米洞直徑及金屬厚度等研究對金奈米網陣列的影響,而同時我們也對金奈米網陣列的感測能力做分析,所達到的最高感測能力值(figure-of-merit)為8.69。
    此外,我們將金奈米網陣列結構的研究再延伸,於金奈米網陣列結構裡加入金屬圓盤陣列結構,研究此兩種結構之間所產生交互作用耦合的現象並探討該結構的光學特性,我們試圖改變金屬圓盤的尺寸及金屬種類以得到更好的感測能力,經實驗參數的調整目前我們所得到最高感測能力值(figure-of-merit)為12.97。
    期望這些具有高感測能力的研究成果將來能有更多的應用。

    Fabrication of Au nanohole array is demonstrated using Nanospherical-Lens Lithography. Surface plasmon resonance (SPR) of the Au nanohole arrays in water is analyzed using transmission spectroscopy. We investigated how the SPR spectra changes when we change the structural parameters, such as periodicity, diameters, and thickness of the nanohole arrays. The refractive sensing capabilities of these nanohole arrays are also investigated and the maximum refractive sensing figure-of-merit (FoM) is around 8.69. In addition, we also incorporated nanodisk arrays inside the nanohole arrays and studied the coupling effects in their transmission spectra. The maximum obtained FoM is around 12.97 after optimizing the diameters and thickness of the nanodisks. We believe the results in this thesis can be applied for sensitive biosensing application.

    摘要 I SUMMARY III INTRODUCTION IV 致謝 IX 本文目錄 X 表目錄 XIII 圖目錄 XIII 第一章 簡介 1 1-1 研究動機 1 1-2 奈米球自組裝排列2 1-2.1 奈米球自組裝排列機制2 1-2.2 奈米球自組裝排列裝置3 1-3 奈米球微影術5 1-3.1 奈米球微影術 5 1-3.2 利用奈米球微影術製備奈米結構及應用7 1-4 奈米球鏡微影術12 1-4.1 奈米球鏡微影術12 1-4.2 利用奈米球鏡微影術製備奈米結構及應用15 1-5 表面電漿子18 1-5.1 表面電漿子簡史18 1-5.2 侷域性表面電漿共振19 1-5.3 侷域性表面電漿共振之感測21 1-5.4 表面電漿共振感測器之應用23 第二章 實驗儀器介紹 26 2-1 奈米球溶液26 2-2 奈米球排列裝置26 2-3 製程儀器28 2-3.1 電漿蝕刻系統 28 2-3.2 熱蒸鍍機(Thermal Evaporator)29 2-3.3 汞氙燈曝光系統30 2-4 量測儀器31 2-4.1 場發射掃描式電子顯微鏡(SEM)31 2-4.2 分光光譜儀(UV-visible Spectroscopy)32 第三章 奈米球鏡微影術33 3-1 奈米球鏡微影術 33 3-1.1 奈米球透鏡聚焦之效果33 3-1.2 光阻厚度的選用33 3-2 旋轉斜向蒸鍍製程36 3-2.1 旋轉斜向蒸鍍製程架構36 3-2.2 奈米球鏡微影術搭配旋轉斜向蒸鍍製程之應用38 第四章 金奈米網陣列之量測分析 42 4-1 金奈米網陣列42 4-1.1 金奈米網陣列製作流程42 4-1.2 金奈米網陣列之模擬44 4-1.3 金奈米網陣列結構感測之量測機制47 4-2 金奈米網陣列之量測分析50 4-2.1 週期分析50 4-2.2 金屬薄膜厚度分析55 4-2.3 奈米洞直徑分析61 4-3 金奈米網陣列結構結合金圓盤陣列結構之量測分析 64 4-3.1 結合金圓盤結構之製作流程64 4-3.2 結合金圓盤陣列結構之分析65 4-3.3 金奈米網陣列結構之感測分析73 4-3.4 金奈米網陣列結構結合金圓盤陣列結構之感測分析77 4-3.5 金奈米網陣列結構結合銀金圓盤陣列結構之感測分析84 第五章 結論與未來展望86 5-1 結論 86 5-1.1 奈米球鏡微影術86 5-1.2金奈米網陣列之量測分析86 5-2 未來展望88 參考文獻89

    [1]N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayamat, “Mechanism of Formation of Two-Dimensional Crystals from Latex Particles on Substrates” Langmuir, vol. 8, no. 12, pp. 3183–3190, 1992.

    [2]Anjeanette D. Ormonde, Erin C. M. Hicks, Jimmy Castillo, and Richard P. Van Duyne, “Nanosphere Lithography : Fabrication of Large-Area Ag Nanoparticle Arrays by Convective Self-Assembly and Their Characterization by Scanning UV-Visible Extinction Spectroscopy” Langmuir, vol. 20, no. 16, pp. 6927–6931, 2004.

    [3]Christy L. Haynes and Richard P. Van Duyne, “Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics”, J. Phys. Chem. B 2001, 105, 5599-5611

    [4]Si Hoon Lee, Kyle C. Bantz, Nathan C. Lindquist, Sang-Hyun Oh, Christy L. Haynes, “Self-Assembled Plasmonic Nanohole Arrays” Langmuir, 13685–13693, Sep, 2009

    [5]Yeonho Choi, Soongweon Hong, and Luke P. Lee, “Shadow overlap ion-beam lithography for nanoarchitectures.,” Nano letters, vol. 9, no. 11, pp. 3726–31, Nov. 2009.

    [6]Zhipeng Huang, Adv. Mater. 2007,19,744-748

    [7]O. J. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. Obrien, P. D. Dapkus, and I. Kim, Science, 284, 1819 (1999).

    [8]E. Chow, S. Y. Lin, S. G. Johnson, P. R. Cilleneuve, J. D. Joannapoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou, and A. Alleman, Nature, 407, 983 (2000).

    [9]W. Wu, D. Dey, O. G. Memis, A. Katsnelson, and H. Mohseni, “A novel lithography technique for formation of large areas of uniform nanostructures” Proc. of SPIE Vol. 7039 70390P-1, 2008.

    [10]Wei Wu, Dibyendu Dey, Omer G. Memis, Alex Katsnelson, and Hooman Mohseni, “A Novel Self-aligned and Maskless Process for Formation of Highly Uniform Arrays of Nanoholes and Nanopillars.,” Nanoscale Research Letters, vol. 3, no. 3, pp. 123–127, Mar. 2008.

    [11]Yun-Chorng Chang, Hsin-Chan Chung, Sih.-Chen Lu, and Tzung-Fang Guo, “A large-scale sub-100 nm Au nanodisk array fabricated using nanospherical-lens lithography: a low-cost localized surface plasmon resonance sensor.,” Nanotechnology, vol. 24, no. 9, p. 095302, Mar. 2013.

    [12]吳民耀、劉威志,“表面電漿子理論與模擬,”物理雙月刊, vol. 二十八卷二期, pp. 486–496, 2006.

    [13]邱國斌、蔡定平,“金屬表面電漿簡介,”物理雙月刊, vol. 二十八卷二期, pp. 472–485, 2006.

    [14]Peter Offermans, Martijn C. Schaafsma, Said R. K. Rodriguez, Yichen Zhang, Mercedes Crego-Calama, Sywert H. Brongersma, and Jaime Gomez Rivas, “Universal Scaling of the Figure of Merit of Plasmonic Sensors.” ACS Nano, Vol. 5 , no. 6, 5151–5157 , 2011

    [15]Ahmet A. Yanik, Min Huang, Osami Kamohara, Alp Artar, Thomas W. Geisbert, John H. Connor, and Hatice Altug, “An Optofluidic Nanoplasmonic Biosensor for Direct Detection of Live Viruses from
    Biological Media” Nano Letters, 10, 4962–4969, 2010

    [16]曾重賓,“氧電漿輔助奈米球微影術之研究與應用, ” 國立成功大學, 2010

    無法下載圖示 校內:2019-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE