| 研究生: |
馬元騏 Ma, Yuan-Ci |
|---|---|
| 論文名稱: |
傾角設置之氣球輔助無人機設計與分析 Design and Analysis of Balloons Supported Drone with Tilted Set Propellers |
| 指導教授: |
陳偉良
Chan, Woei-Leong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 民航研究所 Institute of Civil Aviation |
| 論文出版年: | 2024 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 無人機 、傾斜推力設置 、氦氣氣球 、輕於空氣 |
| 外文關鍵詞: | Drone, Tilted Rotors Quadcopter, Helium Balloon, Lighter than Air |
| 相關次數: | 點閱:97 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在開發一款無人飛行載具系統,並將其應用於室內農業,如溫室中的自動化番茄授粉作業。儘管四軸無人機已廣泛發展且技術成熟,但其飛行時間短和負載能力有限,限制了應用範圍。
為了解決這些限制,我們提出了一種創新的航空載具,將無人機與充滿輕於空氣氣體的氣球結合,利用氣球提供的自然浮力來抵消重力。這種設計增了飛行載具的慣性,因此需要透過設置傾斜旋翼,犧牲部分垂直推力以獲得側向推力保持其機動性。飛行測試中驗證了不同設置傾角和方向控制的有效性,我們透過進行PID控制定點偏航運動和閉環路徑跟踪任務,驗證了飛船的可控性並展示其潛在應用價值。
此設計的主要優勢在於通過氣球的浮力減少能量消耗,增強了載重能力。靈活的硬體平台和可定制的軟體使該系統不僅適用於農業,還能適應多種工業應用。透過將無人機與氣球結合,飛船能夠長時間懸浮在空中,並且具備攜帶額外傳感器和授粉設備的能力,擴展了其應用範圍和功能。
總之,這種創新的飛船設計擴大了無人飛行載具的應用範圍,提供了一個具成本效益、節能且可客制化的解決方案,適用於室內農業和其他工業應用。未來的研究將致力於進一步優化飛船的結構設計和控制系統,並探索更多的實際應用場景,以提升其實用性和效率。
This research aims to develop an unmanned aerial system for indoor agriculture applications, such as pollination in greenhouse tomato cultivation, through automatic blimp flights. Conventional quadcopters are limited by short hovering times and payload capacity, restricting their application range.
To address these limitations, we propose an innovative aerial vehicle combining a drone with balloons filled with lighter-than-air gas, providing natural buoyancy to counteract gravity. This design increases inertia, necessitating tilted rotors to regain maneuverability by compromising vertical thrust for lateral forces. Flight tests demonstrated the blimp's effectiveness with different rotor angles and orientations. Our PID control work for fixed-point yaw motion and closed-loop path-following validated the blimp's controllability and potential applications.
The primary advantage of this design is its ability to remain airborne with reduced energy expenditure due to the balloons' buoyancy. This reduces power consumption and enhances payload capacity. The flexible hardware and customizable software make the system adaptable for various industrial applications beyond agriculture.
In conclusion, this innovative blimp design expands the potential applications of unmanned aerial vehicles, offering a cost-effective, energy-efficient, and customizable solution for indoor agricultural tasks and other industrial uses.
[1]G. Macias and K. Lee, "Design and Analysis of a Helium-Assisted Hybrid Drone for Flight Time Enhancement," American Journal of Engineering and Applied Sciences 2022, vol. 15, no. 4, pp. 316-330, Nov. 2022.
[2]R. Oliver, S. Y. Khoo, M. Norton, S. Adams and A. Kouzani, "Development of a Single Axis Tilting Quadcopter," 2016 IEEE Region 10 Conference (TENCON), pp. 1849-1852, Nov. 2016.
[3]A. Bin Junaid, A. Diaz De Cerio Sanchez, J. Betancor Bosch, N. Vitzilaios, Y. Zweiri , "Design and Implementation of a Dual-Axis Tilting Quadcopter, " Robotics. 2018, vol. 7, no. 4, Oct. 2018.
[4]I. Al-Darraji, M. Derbali and G. Tsaramirsis, "Tilting-rotors Quadcopters: A New Dynamics Modelling and Simulation based on the Newton-Euler Method with Lead Compensator Control," 2021 8th International Conference on Computing for Sustainable Global Development (INDIACom), pp. 363-369, Mar. 2021.
[5]Y. Zhang et al., "A Novel Miniature Omnidirectional Multi-Rotor Blimp," 2023 IEEE 18th Conference on Industrial Electronics and Applications (ICIEA), pp. 1568-1573, Aug. 2023.
[6]H. A. Kadir and M. R. Arshad, "The development of unmanned small-size double hull blimp for low altitude surveillance system," 2016 IEEE International Conference on Underwater System Technology: Theory and Applications (USYS), pp. 127-132, Dec. 2016.
[7]A. Shimada, H. Furukawa and Y. Uchimura, "A movement control on indoor blimp robots," Proceedings of SICE Annual Conference 2010, pp. 490-491, Aug. 2023.
[8]T. Fukao, T. Oshibuchi, K. Osuka, T. Kohno and Y. Tomoi, "Outdoor blimp robots for rescue surveillance systems," 2008 SICE Annual Conference, pp. 982-987, Aug. 2008.
[9]K. Watanabe, N. Okamura and I. Nagai, "Closed-loop control experiments for a blimp robot consisting of four-divided envelopes," IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society, pp. 2568-2573, Nov. 2015.
[10]K. Watanabe, N. Okamura and I. Nagai, "Development of a blimp robot consisting of four-divided envelopes with four propellers," 2015 15th International Conference on Control, Automation and Systems (ICCAS), pp. 237-242, Oct. 2015.
[11]J. Dong and Y. Fang, "Dynamics Modeling and Controller Design for a Novel Indoor Blimp," 2023 42nd Chinese Control Conference (CCC), pp. 298-303, Jul. 2023.
[12]H. Saiki, T. Fukao, T. Urakubo and T. Kohno, "Hovering control of outdoor blimp robots based on path following," 2010 IEEE International Conference on Control Applications, pp. 2124-2129, Sep. 2010.
[13]H. Saiki, T. Fukao, T. Urakubo and T. Kohno, "A path following control method under wind disturbances for outdoor blimp robots," 2011 IEEE/SICE International Symposium on System Integration (SII), pp. 978-984, Dec. 2011.
[14]M. D'Souza, A. Postula, K. Bialkowski and M. Schulz, "COTS embedded Internet platform and Blimp UAV for educational purposes," 2013, 7th International Conference on Signal Processing and Communication Systems (ICSPCS), pp. 1-5, Dec. 2013.
[15]A. Rojas-Moreno, F. Santos-Rodriguez and N. Curinaupa-Cespedes, "Real-time flight control design for a spherical blimp," 2016 IEEE XXIII International Congress on Electronics, Electrical Engineering and Computing (INTERCON), pp. 1-4, Aug. 2016.
[16]S. H. Song and H. R. Choi, "Design, Control and Implementation of Torus-Type Omniorientational Blimp With Tilting Actuators," in IEEE Access, vol. 9, pp. 147985-147993, Oct. 2021.