| 研究生: |
張家甄 Chang, Chia-Chen |
|---|---|
| 論文名稱: |
地面型太陽光電裝置選址適宜性研究—以臺南市為例 The Suitability of Site Selection for Ground-mounted PV Systems in Tainan City |
| 指導教授: |
胡太山
Hu, Tai-Shan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 都市計劃學系 Department of Urban Planning |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 再生能源選址 、太陽能 、地面型光電 、層級分析法 |
| 外文關鍵詞: | Renewable energy, site selection, photovoltaic, AHP |
| 相關次數: | 點閱:67 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為因應全球氣候變遷以及國內空污所帶來的挑戰,我國於2016年調整政策目標,提出能源轉型,朝向以低碳、潔淨能源為發展主軸,承襲現有政策,國內也在近年陸續掀起太陽光電裝置架設風潮。太陽光電系統的設置類型有三種,屋頂型、地面型以及建築整合型,當中以地面型的太陽光電裝置最常引發爭議,因其涉及各種不同型態之土地,是否對環境造成影響也有待評估,因此也往往需要較長的規劃時程。
過往有關再生能源的研究主要都集中在政策的評估,很少有研究使用真實案例檢視太陽光電裝置真正適宜設置的位址,有鑑於此,本研採用模糊德爾菲法(Fuzzy DelphMethod, FDM),並結合層級分析法(Analytic Hierarchy Process, AHP)探討建構地面型太陽光電裝置的各項評估準則,並以臺南市為研究範圍,運用現有已建置完成之太陽光電案場實證該評選模式。研究結果顯示,十項評估準則中專家最重視遠離一級環境敏感地區,其次為日照時數、鄰近電網以及遠離居民,本研究認為所創建之評估模式將能作為未來地面型太陽光電裝置位址選定之參考,而參考本研究討論案例之設址經驗,未來或許可以考慮設置光電能源專用園區,減少地面型光電案場相關爭議。
Solar panel installations have been set up in recent years in the R.O.C(Taiwan). However, the ground-mounted PV systems are the most controversial because they involve different types of land use and their environmental impact has to be evaluated. In view of this, this study utilizes the Fuzzy Delphi Method (FDM) and the Analytic Hierarchy Process (AHP) to explore the evaluation criteria for constructing the locations of Ground-mounted PV Systems installations. The evaluation model was demonstrated by using the completed solar power projects in Tainan City. The results of the study showed that among the ten evaluation criteria, the experts placed the most importance on the Distance from Class I Environmentally Sensitive Areas, Duration of Insolation, Distance to Grid, and Distance from Residents. The evaluation model created by this study will be used as a reference for future Ground-mounted PV Systems site selection. In the future, it may be possible to consider setting up a dedicated photovoltaic energy park to reduce disputes related to Ground-mounted PV Systems sites.
經濟部能源局,2020。「能源轉型白皮書」。
經濟部工業局,2021。「太陽光電產業 2022-2024專業人才需求推估調查」。
羅良慧,2020。「當農地種電時—淺論公告農業用地範圍設置太陽光電設施的影響」,科技政策觀點,10期,48-60頁。
楊子琳,2022。「2050淨零排放路徑下,我國太陽光電推廣與農業發展之平衡共榮」,臺灣經濟研究月刊,45卷7期,107-112頁。
馮正民、林楨家(2008)。都市及區域分析方法(第二版)。建都文化。
鄭滄濱,2001。軟體組織提升人員能力之成熟度模糊評估模式,國立台灣科技大學資訊管理系資訊管理研究所碩士論文。
集思創意採訪團隊、再生能源處,2018。「水陸並進 從「能源轉型」展決心」,台電月刊,666期,6-11頁。
中嶋, 明. (2015). 太陽光発電によるトラブル発生のメカニズムと解決の方向性専門業者の視点から. 地域生活学研究, 06, 61-70.
Bakhiyi, B., Labrèche, F., & Zayed, J. (2014). The photovoltaic industry on the path to a sustainable future — Environmental and occupational health issues. Environment International, 73, 224-234.
Bhuyan, G. S. (2010, 25-29 July 2010). World-wide status for harnessing ocean renewable resources. IEEE PES General Meeting,
Castillo, C. P., e Silva, F. B., & Lavalle, C. (2016). An assessment of the regional potential for solar power generation in EU-28. Energy Policy, 88, 86-99.
Chan, H.-W., Udall, A. M., & Tam, K.-P. (2022). Effects of perceived social norms on support for renewable energy transition: Moderation by national culture and environmental risks. Journal of Environmental Psychology, 79, 101750.
Colak, H. E., Memisoglu, T., & Gercek, Y. (2020). Optimal site selection for solar photovoltaic (PV) power plants using GIS and AHP: A case study of Malatya Province, Turkey. Renewable energy, 149, 565-576.
Ding, M., Xu, Z., Wang, W., Wang, X., Song, Y., & Chen, D. (2016). A review on China׳ s large-scale PV integration: Progress, challenges and recommendations. Renewable and Sustainable Energy Reviews, 53, 639-652.
Doljak, D., & Stanojević, G. (2017). Evaluation of natural conditions for site selection of ground-mounted photovoltaic power plants in Serbia. Energy, 127, 291-300.
Dresselhaus, M. S., & Thomas, I. L. (2001). Alternative energy technologies. Nature, 414(6861), 332-337.
Ellabban, O., Abu-Rub, H., & Blaabjerg, F. (2014). Renewable energy resources: Current status, future prospects and their enabling technology. Renewable and Sustainable Energy Reviews, 39, 748-764.
Feuerbacher, A., Herrmann, T., Neuenfeldt, S., Laub, M., & Gocht, A. (2022). Estimating the economics and adoption potential of agrivoltaics in Germany using a farm-level bottom-up approach. Renewable and Sustainable Energy Reviews, 168, 112784.
Fischer, D. (2012). Challenges of low carbon technology diffusion: insights from shifts in China's photovoltaic industry development. Innovation and Development, 2(1), 131-146.
Foster, S., & Elzinga, D. (2013). The role of fossil fuels in a sustainable energy system. Un Chronicle, 52(3), 17-19.
Fridleifsson, I. B. (2001). Geothermal energy for the benefit of the people. Renewable and Sustainable Energy Reviews, 5(3), 299-312.
Frondel, M., Ritter, N., Schmidt, C. M., & Vance, C. (2010). Economic impacts from the promotion of renewable energy technologies: The German experience. Energy Policy, 38(8), 4048-4056.
Guaita-Pradas, I., Marques-Perez, I., Gallego, A., & Segura, B. (2019). Analyzing territory for the sustainable development of solar photovoltaic power using GIS databases. Environmental monitoring and assessment, 191(12), 1-17.
Guptha, R., Puppala, H., & Kanuganti, S. (2015, 15-17 Aug. 2015). Integrating fuzzy AHP and GIS to prioritize sites for the solar plant installation. 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD),
Gwo-Hshiung, T., Tzay-an, S., & Chien-Yuan, L. (1992). Application of multicriteria decision making to the evaluation of new energy system development in Taiwan. Energy, 17(10), 983-992.
Hernandez, R. R., Easter, S. B., Murphy-Mariscal, M. L., Maestre, F. T., Tavassoli, M., Allen, E. B., Barrows, C. W., Belnap, J., Ochoa-Hueso, R., Ravi, S., & Allen, M. F. (2014). Environmental impacts of utility-scale solar energy. Renewable and Sustainable Energy Reviews, 29, 766-779.
Hoppmann, J., Huenteler, J., & Girod, B. (2014). Compulsive policy-making—The evolution of the German feed-in tariff system for solar photovoltaic power. Research Policy, 43(8), 1422-1441.
Kalkbrenner, B. J., & Roosen, J. (2016). Citizens’ willingness to participate in local renewable energy projects: The role of community and trust in Germany. Energy Research & Social Science, 13, 60-70.
Kang, H.-Y., Hung, M.-C., Pearn, W., Lee, A. H., & Kang, M.-S. (2011). An integrated multi-criteria decision making model for evaluating wind farm performance. Energies, 4(11), 2002-2026.
Kang, M.-S., Chen, C.-S., Ke, Y.-L., Lee, A. H., Ku, T.-T., & Kang, H.-Y. (2013). Applications of FANP and BOCR in renewable energy—study on the choice of the sites for wind farms. IEEE transactions on industry applications, 49(2), 982-989.
Kumar, A., Sah, B., Singh, A. R., Deng, Y., He, X., Kumar, P., & Bansal, R. (2017). A review of multi criteria decision making (MCDM) towards sustainable renewable energy development. Renewable and Sustainable Energy Reviews, 69, 596-609.
Lee, A. H., Kang, H.-Y., & Liou, Y.-J. (2017). A hybrid multiple-criteria decision-making approach for photovoltaic solar plant location selection. Sustainability, 9(2), 184.
Lee, H.-C., & Chang, C.-T. (2018). Comparative analysis of MCDM methods for ranking renewable energy sources in Taiwan. Renewable and Sustainable Energy Reviews, 92, 883-896.
Li, C., Wang, H., Miao, H., & Ye, B. (2017). The economic and social performance of integrated photovoltaic and agricultural greenhouses systems: Case study in China. Applied Energy, 190, 204-212.
Majumdar, D., & Pasqualetti, M. J. (2019). Analysis of land availability for utility-scale power plants and assessment of solar photovoltaic development in the state of Arizona, USA. Renewable energy, 134, 1213-1231.
Merrouni, A. A., Elalaoui, F. E., Mezrhab, A., Mezrhab, A., & Ghennioui, A. (2018). Large scale PV sites selection by combining GIS and Analytical Hierarchy Process. Case study: Eastern Morocco. Renewable energy, 119, 863-873.
Mohtasham, J. (2015). Review Article-Renewable Energies. Energy Procedia, 74, 1289-1297.
Moore-O'Leary, K. A., Hernandez, R. R., Johnston, D. S., Abella, S. R., Tanner, K. E., Swanson, A. C., Kreitler, J., & Lovich, J. E. (2017). Sustainability of utility-scale solar energy – critical ecological concepts. Frontiers in Ecology and the Environment, 15(7), 385-394.
Palmer, D., Gottschalg, R., & Betts, T. (2019). The future scope of large-scale solar in the UK: Site suitability and target analysis. Renewable energy, 133, 1136-1146.
Peters, I. M., & Buonassisi, T. (2019). The impact of global warming on silicon PV energy yield in 2100. 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC),
Rediske, G., Siluk, J. C. M., Gastaldo, N. G., Rigo, P. D., & Rosa, C. B. (2019). Determinant factors in site selection for photovoltaic projects: A systematic review. International Journal of Energy Research, 43(5), 1689-1701.
Saaty, R. W. (1987). The analytic hierarchy process—what it is and how it is used. Mathematical modelling, 9(3-5), 161-176.
Sabo, M. L., Mariun, N., Hizam, H., Radzi, M. A. M., & Zakaria, A. (2017). Spatial matching of large-scale grid-connected photovoltaic power generation with utility demand in Peninsular Malaysia. Applied Energy, 191, 663-688.
Sánchez-Lozano, J., García-Cascales, M. S., & Lamata, M. T. (2016). Comparative TOPSIS-ELECTRE TRI methods for optimal sites for photovoltaic solar farms. Case study in Spain. Journal of cleaner production, 127, 387-398.
Shao, M., Han, Z., Sun, J., Xiao, C., Zhang, S., & Zhao, Y. (2020). A review of multi-criteria decision making applications for renewable energy site selection. Renewable energy, 157, 377-403.
Shen, Y.-C., Chou, C. J., & Lin, G. T. (2011). The portfolio of renewable energy sources for achieving the three E policy goals. Energy, 36(5), 2589-2598.
Shen, Y.-C., Lin, G. T., Li, K.-P., & Yuan, B. J. (2010). An assessment of exploiting renewable energy sources with concerns of policy and technology. Energy Policy, 38(8), 4604-4616.
Sindhu, S., Nehra, V., & Luthra, S. (2017). Investigation of feasibility study of solar farms deployment using hybrid AHP-TOPSIS analysis: Case study of India. Renewable and Sustainable Energy Reviews, 73, 496-511.
Spertino, F., Di Leo, P., & Cocina, V. (2013). Economic analysis of investment in the rooftop photovoltaic systems: A long-term research in the two main markets. Renewable and Sustainable Energy Reviews, 28, 531-540.
Steinhäußer, R., Siebert, R., Steinführer, A., & Hellmich, M. (2015). National and regional land-use conflicts in Germany from the perspective of stakeholders. Land Use Policy, 49, 183-194.
Stocker, T. (2014). Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge university press.
Suuronen, A., Lensu, A., Kuitunen, M., Andrade-Alvear, R., Celis, N. G., Miranda, M., Perez, M., & Kukkonen, J. V. (2017). Optimization of photovoltaic solar power plant locations in northern Chile. Environmental Earth Sciences, 76(24), 1-14.
Uyan, M. (2013). GIS-based solar farms site selection using analytic hierarchy process (AHP) in Karapinar region, Konya/Turkey. Renewable and Sustainable Energy Reviews, 28, 11-17.
Uyan, M. (2017). Optimal site selection for solar power plants using multi-criteria evaluation: A case study from the Ayranci region in Karaman, Turkey. Clean Technologies and Environmental Policy, 19(9), 2231-2244.
Vagiona, D. G. (2021). Comparative Multicriteria Analysis methods for ranking sites for solar farm deployment: A Case study in Greece. Energies, 14(24), 8371.
Wang, C.-N., Dang, T.-T., & Bayer, J. (2021). A two-stage multiple criteria decision making for site selection of solar photovoltaic (PV) power plant: A case study in Taiwan. IEEE Access, 9, 75509-75525.
Wang, G., Qin, L., Li, G., & Chen, L. (2009). Landfill site selection using spatial information technologies and AHP: a case study in Beijing, China. Journal of environmental management, 90(8), 2414-2421.
Wang, T., Wu, G., Chen, J., Cui, P., Chen, Z., Yan, Y., Zhang, Y., Li, M., Niu, D., Li, B., & Chen, H. (2017). Integration of solar technology to modern greenhouse in China: Current status, challenges and prospect. Renewable and Sustainable Energy Reviews, 70, 1178-1188.
Wen, D., Gao, W., Qian, F., Gu, Q., & Ren, J. (2021). Development of solar photovoltaic industry and market in China, Germany, Japan and the United States of America using incentive policies. Energy Exploration & Exploitation, 39(5), 1429-1456.
Xu, Y., Li, J., Tan, Q., Peters, A. L., & Yang, C. (2018). Global status of recycling waste solar panels: A review. Waste Management, 75, 450-458.
Yousefi, H., Hafeznia, H., & Yousefi-Sahzabi, A. (2018). Spatial site selection for solar power plants using a gis-based boolean-fuzzy logic model: A case study of Markazi Province, Iran. Energies, 11(7), 1648.
Yu, H. J. J., Popiolek, N., & Geoffron, P. (2016). Solar photovoltaic energy policy and globalization: a multiperspective approach with case studies of Germany, Japan, and China. Progress in Photovoltaics: Research and Applications, 24(4), 458-476.
Zhao, Z.-y., Zhang, S.-Y., Hubbard, B., & Yao, X. (2013). The emergence of the solar photovoltaic power industry in China. Renewable and Sustainable Energy Reviews, 21, 229-236.
網路資料
Renewable Energy: The Clean Facts(01 Jun 2022). NRDC. From: https://www.nrdc.org/stories/renewable-energy-clean-facts
Stricken solar sector sets out to regain leading Energiewende role(05 Dec 2018). Clean Energy Wire. From: https://www.cleanenergywire.org/dossiers/stricken-solar-sector-sets-out-regain-leading-energiewende-role
Solar resource maps of Taiwan (China)(02 Dec 2021). Solargis. From: https://solargis.com/maps-and-gis-data/download/taiwan-china
國際再生能源發展趨勢與政策(2021年6月2日)。經濟部能源局。取自:https://www.re.org.tw/knowledge/more.aspx?cid=201&id=3966
設置系統類型(2023年1月6日)。太陽光電單一服務窗口。取自:https://www.mrpv.org.tw/Article/PubArticle.aspx?type=setup_info&post_id=61
日本坡地太陽光電二三事——從無人之地到全國矚目(2021年11月11日)。環境資訊中心。取自:https://e-info.org.tw/node/232716
不讓經濟部說了算! 德國環境部霸氣盤點:九成六國土不開發也能100%「生態友善」綠能(2019年9月3日)。環境資訊中心。取自:https://e-info.org.tw/node/219913
資訊圖表_各縣市太陽光電裝置容量排名(2023年3月14日)。台灣電力公司。取自:https://www.taipower.com.tw/tc/Chart.aspx?mid=194
取得發電業籌設許可太陽光電案場土地地號(2023年4月17日)。經濟部能源局。取自:https://www.moeaboe.gov.tw/ecw/populace/content/SubMenu.aspx?menu_id=23059
109年度臺南市宗地地號屬性資料(2022年6月1日)。台南市政府資料開放平臺。取自:https://data.tainan.gov.tw/dataset/109_par
國土測繪圖資服務雲(2023年5月7日)。內政部國土測繪中心。取自:https://maps.nlsc.gov.tw
111年9月行政區人口統計_村里_臺南市(2022年10月7日)。社會經濟資料服務平台。取自:https://segis.moi.gov.tw/STAT/Web/Platform/Product/STAT_ProductView.aspx?pid=0B74191C4E5CA476156DC08E92B50EE2&spid=270FF491B7FC26DDAB339B455E2B6ABD
配電級再生能源可併容量查詢系統(2023年5月25日)。台灣電力公司。取自:https://hcweb.taipower.com.tw/geohc/
環境敏感地區單一窗口查詢平台(2023年3月29日)。內政部營建署。取自:https://eland.cpami.gov.tw/SEPortal/Web_SEData/QuerySEDataAdmin?
氣候月平均(2022年12月9日)。交通部中央氣象局。取自:https://www.cwb.gov.tw/V8/C/C/Statistics/monthlymean.html
內政部20公尺網格數值地形模型資料(2022年6月23日)。政府資料開放平臺。取自:https://data.gov.tw/dataset/35430
年報_臺南市公告土地現值劃分地價區段及最高最低地價表(2023年5月29日)。台南市政府地政局。取自:https://land.tainan.gov.tw/News.aspx?n=31945&sms=23625