簡易檢索 / 詳目顯示

研究生: 沈笠筠
Shen, Li-Yun
論文名稱: 低矮型超高性能纖維混凝土結構牆受反覆載重之分析模型
Computational modeling for squat UHPFRC structural walls under displacement reversals
指導教授: 洪崇展
Hung, Chung-Chan
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 148
中文關鍵詞: 結構牆超高性能纖維混凝土遲滯行為有限元素模型
外文關鍵詞: Structural walls, Ultra High Performance Fiber Reinforce Concrete (UHPFRC), Hysteretic behaviour, Finite element model
相關次數: 點閱:225下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 許多研究指出,使用超高性能纖維混凝土材料能有效提升結構的抗剪能力與韌性。根據陳弘錡(2015)的實驗結果顯示,低矮型超高性能纖維混凝土結構牆主要有兩個破壞模式,一是撓剪破壞,二是滑移破壞。目前許多模型對於結構牆的彈性及撓曲行為已經有相當的精準度,但對於結構牆剪力強度的預測,仍有許多待研究部分。本文研究目的在於建立一套能模擬低矮型超高性能纖維混凝土結構牆受彈性、撓曲、剪力行為與剪力滑移行為之分析模型。本文使用有限元素模型,先利用非線性梁柱元素模擬超高性能纖維混凝土結構牆受彈性與彎矩之行為,連接兩個彈簧模型並定義其遲滯行為,分別模擬結構牆的剪力行為與剪力滑移行為。剪力行為是以修正壓立場理論為基礎,建立其破壞側力位移曲線;剪力滑移行為是以規範探討與實驗觀察結果為基礎,建立其破壞側力位移曲線。最後,此研究所發展之分析模型的適用性將透過相關之實驗結果進行驗證(陳弘錡,2015),結果證實此模型除了可以有效模擬低矮型超高性能纖維混凝土結構牆的遲滯迴圈行為,還可以預測其非彈性變形之剪力與滑移的分量。

    A number of studies have suggested that the use of ultra high performance fiber reinforce concrete (UHPFRC) significantly enhances the shear capacity and ductility of structural elements. Accoarding to the squat UHPFRC structural walls experimental results (Hung-Chi Chen,2015), there are two major failure modes: fiexural-shear failure and sliding shear failure. There are models that represent the flexural behaviour of walls to various degrees of accuracy. However, an efficient model is needed for accurate representation of the flexural and shear behaviour of these walls. In order to develop an analytical model for the simulation of the fiexural behavior, shear deformation and sliding shear behavior of the squat UHPFRC structural walls, the finite element software OpenSEES is used in this study. The developed model can simulate the fiexural behavior by using the nonlinear beam-column element. And consists of two nonlinear springs to simulate the shear behavior and sliding shear behavior. The shear envelope curve is based on the modified compression field theory (MCFT). The sliding shear envelope curve is based on the formulas and results of experimental observations. Finally, the comparison of simulated result and experimental result indicates that the proposed model can be used efficiently in simulating the hysteretic behaviour of the squat UHPFRC structural walls and to be capable of accurately predicting both shear and sliding components of inelastic deformation.

    摘要 I 誌謝 VII 目錄 VIII 表目錄 XI 圖目錄 XIII 符號 XIX 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 1 1.3 研究方法 2 第二章 文獻回顧 3 2.1 高性能纖維混凝土 3 2.2 超高性能纖維混凝土 4 2.3 低矮型結構牆 6 2.4 高性能纖維混凝土之結構牆 8 2.5 超高性能纖維混凝土之結構牆 10 2.5-1 試體介紹 10 2.5-2 實驗結果 - 遲滯迴圈圖 16 2.5-3 實驗結果 -剪力位移、撓曲位移與滑移位移 21 2.6 修正壓力場理論(Modified Compression-Field Theory) 23 2.6-1 MCFT應用於一般混凝土 23 2.6-1-1 諧合方程式 25 2.6-1-2 力平衡方程式 26 2.6-1-3 材料組成律 31 2.6-2 MCFT應用於高性能纖維混凝土(HPFRC) 32 2.7 結構牆之非線性分析模型 35 第三章 超高性能混凝土(UHPC)結構牆分析 40 3.1 基準模型之建立 40 3.1-1 超高性能混凝土材料模型 42 3.1-2 鋼筋材料模型 44 3.2 剪力行為模擬 46 3.2-1 超高性能混凝土材料組成律關係 46 3.2-2 受單向載重下之側力位移曲線 49 3.2-3 受反覆載重下之載重位移遲滯迴圈圖 58 3.3 剪力滑移行為模擬 62 3.3-1 剪力滑移公式探討 62 3.3-2 受單向載重下之側力位移曲線 66 3.3-2-1 S1剪力滑移側力位移曲線之建立 67 3.3-2-2 S2剪力滑移側力位移曲線之建立 69 3.3-3 受反覆載重下之載重位移遲滯迴圈圖 70 3.4 超高性能混凝土結構牆模型驗證 71 3.4-1 模型參數設定 71 3.4-2 UHPC結構牆分析結果 77 3.4-2-1 UHPC-HS-0.5√(f'c)結構牆 78 3.4-2-2 UHPC-HS-0.83√(f'c)結構牆 84 第四章 超高性能纖維混凝土(UHPFRC)結構牆分析 91 4.1 基準模型之建立 91 4.1-1 超高性能纖維混凝土材料模型 92 4.1-2 鋼筋材料模型 94 4.2 剪力行為模擬 95 4.2-1 超高性能纖維混凝土材料組成律關係 95 4.2-2 受單向載重下之側力位移曲線 98 4.2-3 受反覆載重下之載重位移遲滯迴圈圖 104 4.3 滑移行為模擬 105 4.3-1 受單向載重下之側力位移曲線 105 4.3-2 受反覆載重下之載重位移遲滯迴圈圖 108 4.4 超高性能纖維混凝土結構牆模型驗證 109 4.4-1 模型參數設定 109 4.4-2 UHPFRC結構牆分析結果 115 4.4-2-1 UHPFRC-HS-0.83√(f'c)結構牆 117 4.4-2-2 UHPFRC-NS-0.5√(f'c)結構牆 121 4.4-3 剪力滑移側力位移曲線之參數研究 125 4.4-4 剪力崩塌點之參數研究 130 第五章 結論與建議 133 參考文獻 135 附錄A 各試體之MCFT計算結果 143

    曲哲,初明進(2009),「轉角軟化航架模型與修正壓力場理論的比較研究」,工程力學,第26卷第三期,頁36-42。
    余明松(2002),「低型RC剪力牆-構架互制實驗研究」,國立成功大學土木工程研究所碩士論文。
    李和昇(2016),「超高性能纖維混凝土之拉伸硬化行為與結構構件之撓曲行為」,國立成功大學土木工程研究所碩士論文。
    涂耀賢(2005),「低矮型RC牆暨構架之側向載重位移曲線預測研究」,國立台灣科技大學營建工程研究所博士論文。
    陳弘绮(2015),「高強度鋼筋加勁超高性能纖維混凝土低矮型剪力牆之反覆載重行為」,國立中央大學土木工程研究所碩士論文。
    陳學偉,韓小雷,季靜(2007),「鄭宜基於纖維模型的 CFRP 布加固混凝土柱有限元分析」,工業建築,2007年增刊。
    黃忠良(2012),「高韌性纖維混凝土耦合結構牆之數值模擬」,國立中央大學土木工程研究所碩士論文。
    葉欲凡(2005),「鋼筋混凝土梁柱接頭剪力衰減模式應用於構架層間剪力與變位之預測」,國立中央大學土木工程研究所碩士論文。
    蕭輔沛,鍾立來,葉勇凱,簡文郁,沈文成,邱聰智,周德光,趙宜峰,翁樸文,楊耀昇,涂耀賢,柴駿甫,黃世建(2013),「校舍結構耐震評估與補強技術手冊(第三版)」,國家地震工程研究中心研究報告,NCREE-13-023,台北, 299頁。
    魏巍巍,貢金鑫(2011),「鋼筋混凝土構件基於修正壓力場理論的受剪承载力計算」,工程力學,第28卷第2期,頁111-117。
    ASCE/SEI 41-06 (2006), “Seismic Rehabilitation of Existing Buildings, ”
    American Society of Civil Engineers, Reston, Virginia.
    Athanasopoulou, A. (2010) , “ Shear strength and drift capacity of reinforced
    concrete and high-performance fiber reinforced concrete low-rise walls subjected to displacement reversals, ” Doctoral dissertation, The University of Michigan.
    Cho,C. G. , Ha,G. J. , and Kim, Y. U. (2008), “ Nonlinear model
    of reinforced concrete frames retrofitted by in-filled HPFRCC walls, ”
    Structural Engineering and Mechanics, Vol. 30, No. 2,211-223
    EN 1998-1 (2004), “Eurocode 8: Design of structures for earthquake resistance - Part 1: General rules, seismic actions and rules for buildings, ” CEN:European Committee for Standardization .
    Fehling, F. , Schmidt, N. , and Sturwald, S. (2008), “ Ultra High Performance Concrete (UHPC) , ” Kassel : kassel university press.
    Filippou, F. C. , Popov, E. P., Bertero, V. V. (1983), "Effects of Bond Deterioration on Hysteretic Behavior of Reinforced Concrete Joints," Report EERC 83-19, Earthquake Engineering Research Center, University of California, Berkeley.
    Fukuyama, H. and Suwada, H. (2003), “Basic test on compressive properties of high performance fiber reinforced cementitious composites (Part 2 Biaxial Loading Test), ” Summaries of Technical Papers of Annual Meeting, Architectural Institute of Japan, September, IV, pp.421-422.
    Ghobarah A. , and Youssef M. (1999), “Modelling of reinforced concrete structural walls.”Engineering Structures, 21, pp.912–923.
    Gupta, A., and Rangan, B. V. (1998) , “High-strength concrete (HSC) structural walls,” ACI structural journal, 95(2), pp. 194–204.
    Habel, K. , Viviani, M. , Denarié, E. , and Brühwiler, E. (2006), “Development of the mechanical properties of an ultra-high performance fiber reinforced concrete (UHPFRC) , ” Cement and Concrete Research, 36(7), pp.1362-1370.
    Han, T. S. , Feenstra,P.H. , and Billington, S.L. (2003), “ Simulation of Highly Ductile Fiber-Reinforced Cement-Based Composite Components Under Cyclic Loading , ” ACI Structural Journal, N0. 100-S77, pp. 749-757.
    Hassan , A.M.T. , Jones, S.W. , and Mahmud, G.H. (2012) “Experimental test methods to determine the uniaxial tensile and compressive behaviour of ultra high performance fibre reinforced concrete (UHPFRC) , ” Construction and Building Materials, 37, pp.874-882.
    Hsu, T. T., and Mo, Y. L. (1985) , “Softening of concrete in low-rise shearwalls,” In ACI Journal Proceedings, 82( 6), pp. 883–889.
    Http://opensees.berkeley.edu.tw,柏克萊大學地震研究中心。
    Hung, C. C. and Chen, Y. S. (2016), “ Innovative ECC Jacketing for Retrofitting Shear-Deficient RC Members,” Construction & Building Materials. 111, pp. 408-418.
    Hung, C. C. and Chueh, C. Y. (2016), “ Cyclic Behavior of UHPFRC Flexural
    Members Reinforced with High-Strength Steel Rebar,” Engineering
    Structures, 122, pp.108-120.
    Hung, C. C. and El-Tawil, S. (2011), “ Seismic Behavior of a Coupled Wall System with HPFRC Materials in Critical Regions,” ASCE Journal of Structural Engineering ASCE. 137(12), pp.1499-1507.
    Hung, C. C. and Li, S. H. (2013), “ Three-dimensional Model for Analysis of High Performance Fiber Reinforced Cement-based Composites,” Composites Part B: Engineering, 45, pp.1441-1447.
    Hung , C. C. and Sherif El-Tawil (2010), “ Hybrid Rotating/Fixed-Crack Model for High-Performance Fiber-Reinforced Cementitious Composites,”ACI Materials Journal, No.107-M64, pp.1-9.
    Hung, C. C. and Su, Y. U. (2013), “ On Modeling Coupling Beams Incorporating Strain-hardening Cement-based Composites,” Computers and Concrete, 12(4), pp.243-259.
    Hung, C. C. and Su, Y. U. (2016), “ Medium-term self-healing evaluation of
    Engineered Cementitious Composites with varying amounts of fly ash and
    exposure durations, ” Construction and Building Materials, 118, pp. 194-203.
    Hung, C. C. and Yen, W. M. (2014), “Experimental evaluation of ductile fiber reinforced cement-based composite beams incorporating shape memory alloy bars,” Procedia Engineering, 79, pp.506-512.
    Hung, C. C. , Yen, W. M. ,and Yu, K. H. (2016), “ Vulnerability and Improvement of Reinforced ECC Flexural Members under Displacement Reversals: Experimental Investigation and Computational Analysis,” Construction & Building Materials, 107, pp.287-298.
    Hung, C. C. , Su, Y. U. , and Yu, K. H. (2013), “ Modeling the shear hysteretic
    response for high performance fiber reinforced cementitious composites,”
    Construction and Building Materials, 41, pp. 37-48.
    Hung, C. C. , Tseng, B. T. , You, W. G. , and Huang, J. L. (2011) , “ Effectiveness of Using High Performance Fiber Reinforced Concrete in Coupled Structural Walls for Improving Seismic Performance,” Structural Engineering, 26(4), pp. 3-16.
    Hwang, S. J., and Lee, H. J. (1999) , “Analytical model for predicting shear strengths of exterior reinforced concrete beam-column joints for seismic resistance,” ACI Structural Journal, 96(5), 846–857.
    Hwang, S. J., and Lee, H. J. (2000) , “Analytical model for predicting shear strengths of interior reinforced concrete beam-column joints for seismic resistance,” ACI Structural Journal, 97(1), pp. 35–44.
    Hwang, S. J., Fang, W. H., Lee, H. J., & Yu, H. W. (2001) , “Analytical Model for Predicting Shear Strengthof Squat Walls,” Journal of Structural Engineering, 127(1), pp.43-50.
    Jun, D. H. (2014) , “Nonlinear analysis of reinforced concrete shear wall using fiber elements, ” Proceedings of the 9th International Conference on Structural Dynamics, Sasang-gu, Busan, Korea.
    Kabeyasawa , T. , Shiohara, H. , Otani, S. , and Aoyama., H. (1984) , “Analysis of the full-scale sevenstory reinforced concrete test structure, ” Journal of the Faculty of Engineering, The University of Tokyo 37(2), pp. 431–478.
    Karsan, I. D. and Jirsa, I.O. (1969) ,“Behavior of Concrete Under Compressive Loadings, ”Journal of the Structural Division, ASCE, Vol.95, No.12, PP.2543-2563.
    Kent, D.C. and Park, R. (1971), “Flexural Members with Confined Concrete,” Journal of the Structural Division, ASCE, Vol. 97, No.7, pp.1969-1990.
    Kim, J.K., Kim, J.S., Ha, G.J. and Kim, Y.Y. (2007), “Tensile and fiber dispersion performance of ECC(Engineered Cementitious Composite) produced with slag particles,” Cement Concrete Res., 37(7), pp.1096-1105.
    Kim, K. , and Parra-Montesinos, G. J. (2003), “Behavior of HPFRCC low-rise walls subjected to displacement reversals,” High Performance Fiber Reinforced Cement Composites (HPFRCC 4), pp.505-515.
    Lehman, D. E. and Moehle, J. P. (2000), “ Seismic Performance of Well-Confined Concrete Bridge Columns. ” Earthquake Engineering Research Center, Report PEER1998/01, California, pp.295.
    Lowes , N. L. , Nilanjan , M. , and Arash , A. (2004), “A Beam-Column Joint Model for Simulating the Earthquake Response of Reinforced Concrete Frames,” Pacific Earthquake Engineering Research Center, University of California, Berkeley.
    Parra-Montesino, G. J. (2005) “High-performance fiber reinforced cement composites: an alternative for seismic design of structures, ” ACI Structural Journal,102-S68,pp.668-675.
    Park, Y. J. and Ang , AHS. (1985) ,“Mechanistic seismic damage model for reinforced concrete, ” Journal of structural engineering , ASCE , 111(4), pp.722-739.
    Parra-Montesinos, G. J. and Kim, K. Y. (2004), “Seismic Behavior of Low-Rise Walls Constructed With Strain-Hardening Fiber Reinforced Cement Composites,” 13th World Conference on Earthquake Engineering, Paper No. 510
    Parra-Montesinos, G. J., Canbolat, B. A., and Jeyaraman, G. (2006), “Relaxation of confinement reinforcement requirements in structural walls through the use of fiber reinforced cement composites,” In 8th National Conference on Earthquake Engineering.
    Paulay, T. , Priestley, M. J. N. , and Synge, A. J. (1982) , “ Ductility in earthquake resisting squat shear walls,” ACI Journal Proceedings, 79(4).
    Richard, P. , and Cheyrezy, M. (1995), “Composition of reactive powder concretes, ” Cement and concrete research, 25(7), pp.1501-1511.
    Scott, B.D., Park, R., and Priestley, M.J.N. (1982), “Stress-strain behavior of concrete confined by overlapping hoops at low and high strain rates, ” ACI Journal, No. 79-2, pp.13-27.
    Stevens, N. J. , Uzumeri, S. M. , and Collins , M. P. (1991), “Reinforced concrete subjected to reversed-cyclic shear experiments and constitutive model, ” ACI Structural Journal, 88(2), pp. 135-146.
    Thorenfeldt, E., Tomaszewicz, A., and Jensen, J. J. (1987), ” Mechanical Properties of High Strength Concrete and Application in Design,” Proceedings of the Symposium Utilization of High Strength Concrete, Tapir, Trondheim, pp. 149-159.
    Vecchio, F. J. (1989), “Nonlinear finite element analysis of reinforced concrete membranes, ” ACI Structral Journal,No.86-S4,26-35.
    Vecchio, F. J. and Collins , M. P. (1986), “The modified compression field theory for reinforced concrete elements subjected to shear, ” ACI Structral Journal, No.83-22, pp.219-231.
    Vecchio, F. J. and Collins , M. P. (1988), “Predicting the response of reinforced concrete beams subjected to shear using modified compression field theory, ” ACI Structral Journal, No.85-S27, pp.258-268.
    Vecchio, F. J. , Collins , M. P. , and Menbers, ASCE (1993) , “Compression Response of Cracked RC, ” ASCE , Journal of Structural Engineering, Vol.119, No.12 ,pp.3590-3610.
    Vulcano, A . , Bertero, V. V. , and Colotti, V. (1988) , “ Analytical modeling of RC structural walls. Proceedings, ” 9th World Conference on Earthquake Engineering (6). Tokyo-Kyoto, Japan., pp.41–46.
    Walraven, J.C. (1981), “Fundamental analysis of aggregate interlock,” Proceedings, ASCE, 107, ST11, pp.2245-2270.
    Massone L. M. , Orakcal, K. ,and Wallace, J. W. (2006) , “Analytical Modeling of Reinforced Concrete Walls for Predicting Flexural and Coupled–Shear-Flexural Responses, ” Pacific Earthquake Engineering Research Center, University of California, Los Angeles.
    Wille, K. , Kim, D. J. , and Naaman, A. E. (2011), “Strain-hardening UHP-FRC with low fiber contents,” Materials and Structures, 44(3), pp.583-598.

    無法下載圖示 校內:2021-08-04公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE