| 研究生: |
楊宗毅 Yang, Tsung-Yi |
|---|---|
| 論文名稱: |
高壓下氫量子線的物理特性 Hydrogen Quantum Wire under Extreme Pressure |
| 指導教授: |
許正餘
Hsu, Jang-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 41 |
| 中文關鍵詞: | 擴散量子蒙特卡羅 、零點能 、久保公式 、電導率 |
| 外文關鍵詞: | diffusion quantum Monte Carlo, zero point energy, Kubo formula, electrical conductivity |
| 相關次數: | 點閱:60 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
設想在一個鑽石中心挖一個圓柱型的長孔,將一條氫量子線擺放其中,而尚未鍵結的碳以一層氫氣去鍵結,使得我們所要研究的氫量子線相當於位在一個理想系統,然後利用擴散量子蒙特卡羅法來研究氫量子線在高壓下從雙原子態變成單原子態的效應,並發現在單原子態時存在零點能0.135 ± 0.012eV 且有液態的特性。
由久保公式和電子半古典軌跡研究下,考慮聲子對電子的散射所計算的電導率相當是鹼金屬元素鋰的電導率的五十分之一。
在緊束縛近似下計算在原子平均間距大約0.92Å,壓力相當230GPa,所產生的能帶開始吸收可見光,但此時不是完全的能隙閉合。隨著壓力的增加,和能帶寬度的變大,黑色氫氣將會被觀測到。
A hydrogen quantum wire (HQW) is proposed to reside in a cylindrical hollow of a diamond crystal. An outer layer of hydrogen atoms to satisfy the dangling bonds of surface carbon makes the inner hydrogen atoms of the HQW reasonably isolated. The diffusion quantum Monte Carlo study shows a zero point energy of 0.135eV per atom in its monatomic state.
The electrical conductivity derived from the Kubo formula with use of the semiclassical trajectories under phonon scattering is in the same rank as mercury but less than 1/50 of Lithium metal. The onset of monatomic HQW occurs at the interatomic length of 0.92 Å in liquid phase under a pressure around 200GPa. It yields, without the complete band closure, an energy bandwidth enough to absorb the visible lights in its entirety.
[1] Wigner, E. & Huntington, H. B. On the possibility of a metallic modification of hydrogen. J. Chem. Phys. 3, 764 (1935).
[2] N. W. Ashcroft, Phys. Rev. Lett. 21, 1748 (1968).
[3] R. S. Hawke, T. J. Burgess, D. E. Duerre, J. G. Huebel, R.N. Keeler, H. Klapper, and W. C. Wallace, Phys. Rev. Lett. 41, 994 (1978).
[4] Ho-kwang Mao and Russell J. Hemley, Rev. Mod. Phys., 66, 671 (1994).
[5] W. J. Nellis, A. C. Mitchell, P. C. McCandless, D. J. Erskine, and S. T. Weir, Phys. Rev. Lett. 68, 2937 (1992); S. T. Weir, A. C. Mitchell, and W. J. Nellis, Phys. Rev. Lett. 76, 1860 (1996); W. J. Nellis, S. T. Weir, and A. C. Mitchell, Phys. Rev. B 59, 3434 (1999); W. J. Nellis, 高圧力の科学と技術Vol. 17, No. 4 (2007)
[6] R. J. Hemley and H. K. Mao, Phys. Rev. Lett. 63,1393 (1989).
[7] R. J. Hemley, M. Hanfland & H. K. Mao, Nature (London) 350,488 (1991).
[8] Loubeyre, P., Occelli, F. & LeToullec, R. Nature 416, 613–617 (2002).
[9] Marvin Ross.,Phys. Rev. B 54, 9589 (1996).
[10] Thomas J. Lenosky, Joel D. Kress, Lee A. Collins, and Inhee Kwon. Phys. Rev. B 55, 11907 (1997).
[11] Fei Lin, Miguel A. Morales, Kris T. Delaney, Carlo Pierleoni, Richard M. Martin, and D. M. Ceperley Phys. Rev. Lett. 103, 256401 (2009)
[12] S. Scandolo, Proc. Nat. Acad. Sci. (USA) 100, 3051 (2003).
[13] S. A. Bonev, E. Schwegler, T. Ogitsu, and G. Galli, Nature (London) 431, 669 (2004).
[14] Morales MA, Pierleoni C, Schwegler E, Ceperley DM. Proc. Nat. Acad. Sci. (USA) 107, 12799 (2010).
[15] Isaac Tamblyn and Stanimir A. Bonev, J. Chem. Phys. 132, 134503 (2010).
[16] I. F. Silvera and S. Deemyad Low Temp. Phys. T35T, 318 (2009)
[17] P. Loubeyre, R. LeToullec, D. Hausermann, M. Hanfland, R. J.Hemley, H. K. Mao, and L. W. Finger, Nature (London) 383,702 (1996).
[18] D. W. Brenner, et al, J. Phys. Condensed Matter, 14, 783 (2002).
[19] Ioan Kosztin, Byron Faber and Klaus Schulten Am. J. Phys. 64, 633 (1996)
[20] Barbee T W III, Garcia A and Cohen M L 1989 Phys. Rev. Lett. 62 1150
[21] Chris J. Pickard & Richard J. Needs Nature Physics 3, 473 - 476 (2007)
[22] P. R. Wallace, Phys. Rev., 71, 622, (1947).
[23] Zwanzig R. Annu Rev Phys Chem, 1965, 16,67
[24] R.Kubo J. Phys. Soc. Jpn. 12 (1957), pp. 570–586