| 研究生: |
王璟碩 Wang, Jing-Shuo |
|---|---|
| 論文名稱: |
製糖沃土穩定紅土力學行為之研究 Stabilization of Lateritic Soil Using Sugarcane Pressmud |
| 指導教授: |
吳建宏
Wu, Jian-Hong |
| 共同指導教授: |
洪瀞
Hung, Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 製糖沃土 、紅土 、土壤加勁 、長期養置天數 、實驗性研究 |
| 外文關鍵詞: | Sugarcane pressmud, Laterite soil, Soil reinforcement, Long-term effect, Experimental study |
| 相關次數: | 點閱:50 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
紅土廣泛分布於熱帶、亞熱帶地區,是這些區域主要的土壤種類之一。隨著這些區域的快速發展,對於補強紅土的需求也日益增加 。目前主流的方法是使用水泥、石灰等添加劑改善紅土的力學特性,然而這些添加劑的使用卻會增加溫室氣體的排放量。為了實現環境永續發展,工程單位越來越關注使用再生材料來補強受損土壤的方法。為此,本研究旨在探討以製糖沃土 (以下稱沃土) 補強紅土的長期力學行為分析,以深入了解其補強機制並改善紅土的工程性質,提升紅土工程應用上的潛力。
本研究選取林口地區紅土與善化地區善化糖廠的沃土。首先對林口紅土進行基本物性試驗了解其工程性質,接著使用不同含量 (乾土重的4%、8%、12%、16%、20%) 的沃土作為紅土的添加劑進行一系列試驗,包含標準夯實試驗、無圍壓縮試驗、單向度壓密試驗、自由膨脹試驗與三維體積收縮試驗。本研究通過一系列試驗,探討經沃土補強前與補強後紅土的力學行為及穩定性。同時,對經沃土補強前後之紅土進行X射線繞射 (XRD) 和微觀結構分析 (SEM),以了解沃土在土壤補強中的作用機制和潛力。
本研究試驗結果顯示,當沃土含量為4%且養置90天時,其抗壓強度增量為888.07%。然而,隨著沃土含量上升,其抗壓強度增量逐漸下降,唯經沃土補強後紅土抗壓強度仍舊高於未經沃土補強之紅土。同時,由XRD與SEM結果可以發現,隨著養置時間逐漸增加產生更多的水化產物,使結構更為緻密從而提高抗壓強度。除了提高抗壓強度外,沃土中也含有大量的纖維,可以與土壤有良好的相互作用從而抑制膨脹量與降低縮性限度。本研究中觀察到使用4%的沃土會使整體紅土工程性能得到顯著提升,儘管壓密量產生小幅提升,但抗壓強度得到顯著的提升,並且可以有效抑制膨脹與收縮性。
Laterite soil is widely distributed in tropical and subtropical regions, and its demand for stabilization has been increasing rapidly with the development of these areas. Currently, the mainstream method to improve the mechanical properties of laterite soil is the use of additives such as cement and lime. However, the use of these additives increases greenhouse gas emissions. In order to achieve environmental sustainability, people are increasingly focusing on the use of renewable materials to stabilize weak soils. Therefore, this study aims to investigate the long-term mechanical behavior of laterite soil stabilized with sugarcane pressmud (PM), to gain insights into its stabilization mechanism and enhance the engineering properties of laterite soil, thus improving its potential in engineering applications.
In this study, laterite soil from Linkou, New Taipei City, and pressmud from Shanhua Sugar Factory, Tainan City, were selected. Then, a series of tests were conducted using pressmud at different content levels (4%, 8%, 12%, 16%, 20% by dry soil weight) as an additive to laterite soil. Through these tests, the mechanical behavior and stability of laterite soil before and after pressmud stabilization were investigated. Additionally, X-ray diffraction (XRD) and scanning electron microscope (SEM) analyses were conducted on laterite soil samples before and after pressmud stabilization to understand the mechanism and potential of pressmud in soil stabilization.
Our result show the use of 4% pressmud significantly improved the overall engineering performance of laterite soil. Although the consolidation index showed a slight increase, the compressive strength showed a significant improvement. Additionally, the use of 4% pressmud effectively suppressed swelling and shrinkage tendencies in the soil.
[1] Phummiphan, S. Horpibulsuk, P. Sukmak, A. Chinkulkijniwat, A. Arulrajah, S.L. Shen, Stabilisation of marginal lateritic soil using high calcium fly ash-based geopolymer, Road Materials and Pavement Design. 17 (2016) 877–891. https://doi.org/10.1080/14680629.2015.1132632.
[2] T.H. Ko, Nature and properties of lateritic soils derived from different parent materials in Taiwan, Scientific World Journal. 2014 (2014). https://doi.org/10.1155/2014/247194.
[3] M.W. Gui, C.M. Yu, Rate of strength increase of unsaturated lateritic soil, Canadian Geotechnical Journal. 45 (2008) 1335–1343. https://doi.org/10.1139/T08-065.
[4] J.E. Edeh, M. Joel, V.O. Ogbodo, Effects of oil palm fibre ash on cement stabilised lateritic soil used for highway construction, International Journal of Pavement Engineering. 23 (2022) 834–840. https://doi.org/10.1080/10298436.2020.1775230.
[5] R.K. Etim, I.C. Attah, P. Yohanna, Experimental study on potential of oyster shell ash in structural strength improvement of lateritic soil for road construction, International Journal of Pavement Research and Technology. 13 (2020) 341–351. https://doi.org/10.1007/s42947-020-0290-y.
[6] Y. Chin Yung, N. Abdullah, N. Mashros, Shear Strength Behaviour of Canlite-Treated Laterite Soil, 2015. https://www.researchgate.net/publication/271770624.
[7] B.T. Kamtchueng, V.L. Onana, W.Y. Fantong, A. Ueda, R.F. Ntouala, M.H. Wongolo, G.B. Ndongo, A.N. Ze, V.K. Kamgang, J.M. Ondoa, Geotechnical, chemical and mineralogical evaluation of lateritic soils in humid tropical area (Mfou, Central-Cameroon): Implications for road construction, International Journal of Geo-Engineering. 6 (2015). https://doi.org/10.1186/s40703-014-0001-0.
[8] J.C. de Carvalho, L.R. de Rezende, F.B. da F. Cardoso, L.C. de F.L. Lucena, R.C. Guimarães, Y.G. Valencia, Tropical soils for highway construction: Peculiarities and considerations, Transportation Geotechnics. 5 (2015) 3–19. https://doi.org/10.1016/j.trgeo.2015.10.004.
[9] U. Mahalinga-Iyer, D.J. Williams, Road construction using lateritic soil, 1994.
[10] N.C. Consoli, D. Párraga Morales, R.B. Saldanha, A new approach for stabilization of lateritic soil with Portland cement and sand: strength and durability, Acta Geotech. 16 (2021) 1473–1486. https://doi.org/10.1007/s11440-020-01136-y.
[11] E. Mengue, H. Mroueh, L. Lancelot, R.M. Eko, Mechanical Improvement of a Fine-Grained Lateritic Soil Treated with Cement for Use in Road Construction, Journal of Materials in Civil Engineering. 29 (2017). https://doi.org/10.1061/(asce)mt.1943-5533.0002059.
[12] M. Joel, I.O. Agbede, Mechanical-Cement Stabilization of Laterite for Use as Flexible Pavement Material, Journal of Materials in Civil Engineering. (2011). https://doi.org/10.1061/ASCEMT.1943-5533.0000148.
[13] S.A. Ola, Geotechnical properties and behaviour of some stabilized Nigerian lateritic soils, Quarterly Journal of Engineering Geology. 11 (1978) 145–160. https://doi.org/10.1144/GSL.QJEG.1978.011.02.04.
[14] N.Q. Tran, M. Hoy, A. Suddeepong, S. Horpibulsuk, K. Kantathum, A. Arulrajah, Improved mechanical and microstructure of cement-stabilized lateritic soil using recycled materials replacement and natural rubber latex for pavement applications, Constr Build Mater. 347 (2022). https://doi.org/10.1016/j.conbuildmat.2022.128547.
[15] A. Buritatum, S. Horpibulsuk, A. Udomchai, A. Suddeepong, T. Takaikaew, N. Vichitcholchai, J. Horpibulsuk, A. Arulrajah, Durability improvement of cement stabilized pavement base using natural rubber latex, Transportation Geotechnics. 28 (2021). https://doi.org/10.1016/j.trgeo.2021.100518.
[16] Z.H. Majeed, R. Taha, I.T. Jawad, Stabilization of Soft Soil Using Nanomaterials, Research Journal of Applied Sciences, Engineering and Technology. 8 (2014) 503–509.
[17] O.O. Ojuri, P.O. Osagie, B.D. Oluyemi-Ayibiowu, O.G. Fadugba, M.O. Tanimola, V.B. Chauhan, O.O. Jayejeje, Eco-friendly stabilization of highway lateritic soil with cow bone powder admixed lime and plastic granules reinforcement, Cleaner Waste Systems. 2 (2022) 100012. https://doi.org/10.1016/j.clwas.2022.100012.
[18] C.C. Ikeagwuani, Comparative Assessment of the Stabilization of Lime-Stabilized Lateritic Soil as Subbase Material Using Coconut Shell Ash and Coconut Husk Ash, Geotechnical and Geological Engineering. 37 (2019) 3065–3076. https://doi.org/10.1007/s10706-019-00825-0.
[19] S. Arpajirakul, W. Pungrasmi, S. Likitlersuang, Efficiency of microbially-induced calcite precipitation in natural clays for ground improvement, Constr Build Mater. 282 (2021). https://doi.org/10.1016/j.conbuildmat.2021.122722.
[20] D. Mujah, M.A. Shahin, L. Cheng, State-of-the-Art Review of Biocementation by Microbially Induced Calcite Precipitation (MICP) for Soil Stabilization, Geomicrobiol J. 34 (2017) 524–537. https://doi.org/10.1080/01490451.2016.1225866.
[21] E.A. Basha, R. Hashim, H.B. Mahmud, A.S. Muntohar, Stabilization of residual soil with rice husk ash and cement, Constr Build Mater. 19 (2005) 448–453. https://doi.org/10.1016/j.conbuildmat.2004.08.001.
[22] C.H. Liu, C. Hung, Reutilization of solid wastes to improve the hydromechanical and mechanical behaviors of soils — a state-of-the-art review, Sustainable Environment Research. 33 (2023). https://doi.org/10.1186/s42834-023-00179-6.
[23] J. Martirena Hernández, B. Middendorf, M. Gehrke, H. Budelmann, Use of wastes of the sugar industry as pozzolana in lime-pozzolana binders: study of the reaction, Cem Concr Res. 28 (1998) 1525–1536.
[24] A. Roy, Soil Stabilization using Rice Husk Ash and Cement, International Journal of Civil Engineering Research. 5 (2014) 49–54. http://www.ripublication.com/ijcer.htm.
[25] O.D. Afolayan, O.M. Olofinade, I.I. Akinwumi, Use of some agricultural wastes to modify the engineering properties of subgrade soils: A review, in: J Phys Conf Ser, Institute of Physics Publishing, 2019. https://doi.org/10.1088/1742-6596/1378/2/022050.
[26] J. James, Sugarcane press mud modification of expansive soil stabilized at optimum lime content: Strength, mineralogy and microstructural investigation, Journal of Rock Mechanics and Geotechnical Engineering. 12 (2020) 395–402. https://doi.org/10.1016/j.jrmge.2019.10.005.
[27] L.C. Dang, H. Khabbaz, B.J. Ni, Improving engineering characteristics of expansive soils using industry waste as a sustainable application for reuse of bagasse ash, Transportation Geotechnics. 31 (2021). https://doi.org/10.1016/j.trgeo.2021.100637.
[28] A. Jain, A.K. Choudhary, J.N. Jha, Influence of Rice Husk Ash on the Swelling and Strength Characteristics of Expansive Soil, Geotechnical and Geological Engineering. 38 (2020) 2293–2302. https://doi.org/10.1007/s10706-019-01087-6.
[29] L.C. Dang, B. Fatahi, H. Khabbaz, Behaviour of Expansive Soils Stabilized with Hydrated Lime and Bagasse Fibres, in: Procedia Eng, Elsevier Ltd, 2016: pp. 658–665. https://doi.org/10.1016/j.proeng.2016.06.093.
[30] N. Tiwari, N. Satyam, A.J. Puppala, Strength and durability assessment of expansive soil stabilized with recycled ash and natural fibers, Transportation Geotechnics. 29 (2021). https://doi.org/10.1016/j.trgeo.2021.100556.
[31] L. Wei, S.X. Chai, H.Y. Zhang, Q. Shi, Mechanical properties of soil reinforced with both lime and four kinds of fiber, Constr Build Mater. 172 (2018) 300–308. https://doi.org/10.1016/j.conbuildmat.2018.03.248.
[32] M.A. Rahgozar, M. Saberian, J. Li, Soil stabilization with non-conventional eco-friendly agricultural waste materials: An experimental study, Transportation Geotechnics. 14 (2018) 52–60. https://doi.org/10.1016/j.trgeo.2017.09.004.
[33] S. Velmurugan, Recovery of Chemicals from Pressmud-A Sugar Industry Waste, Ndian Chemical Engineer . 48 (2006) 160–163. https://www.researchgate.net/publication/264547627.
[34] M. Balakrishnan, V.S. Batra, Valorization of solid waste in sugar factories with possible applications in India: A review, J Environ Manage. 92 (2011) 2886–2891. https://doi.org/10.1016/j.jenvman.2011.06.039.
[35] R.L. Yadav, S. Solomon, Potential of Developing Sugarcane By-product Based Industries in India, Sugar Tech. 8 (2006) 104–111.
[36] H. Li, W. Xu, X. Yang, J. Wu, Preparation of Portland cement with sugar filter mud as lime-based raw material, J Clean Prod. 66 (2014) 107–112. https://doi.org/10.1016/j.jclepro.2013.11.003.
[37] F.S. Gumanta, S. Ghadr, C.-S. Chen, C.-H. Liu, C. Hung, A. Assadi-Langroudi, Enhancing the mechanical and hydromechanical behaviors of mudstone soils using sugarcane press mud, Transportation Geotechnics. 40 (2023) 100948. https://doi.org/10.1016/j.trgeo.2023.100948.
[38] N.O. Attoh-Okine, Application of genetic-based neural network to lateritic soil strength modeling, Constr Build Mater. 18 (2004) 619–623. https://doi.org/10.1016/j.conbuildmat.2004.04.006.
[39] F.J., and H.C.D. Martin, Laterite and lateritic soils in Sierra Leone, J Agric Sci. (1927) 530–547.
[40] H.F. Winterkorn, E.C. Chandrasekharan, Laterite soils and their stabilization, Winterkorn Road Research Institute. (1951).
[41] G. Santha Kumar, P.K. Saini, R. Deoliya, A.K. Mishra, S.K. Negi, Characterization of laterite soil and its use in construction applications: A review, Resources, Conservation and Recycling Advances. 16 (2022). https://doi.org/10.1016/j.rcradv.2022.200120.
[42] E.R. Tuncer, An engineering classification for certain basalt-derived lateritic soils, Eng Geol. (1977) 319–339.
[43] C. Kumrsi, laterite and lateritic soils amd other problem soils of africa, 1971.
[44] W.J. Morin, P.C. Todor, R. De, J. Brazil Dner, Laterite and lateritic soils and other problem soils of the tropics., 1975.
[45] Newill, A laboratory investigation of two red clays from Kenya, Geotechnique. (1961) 302–318.
[46] Prusinski and Bhattacharja, Effectiveness of Portland Cement and Lime in Stabilizing Clay Soils, Transp Res Rec. (1999).
[47] Z. Ge, Predicting temperature and strength development of the field concrete, 2005. http://lib.dr.iastate.edu/rtd.
[48] H. Solihu, Journal of Civil & Environmental Engineering Cement Soil Stabilization as an Improvement Technique for Rail Track Subgrade, and Highway Subbase and Base Courses: A Review, (2020). https://doi.org/10.37421/jcce.2020.10.344.
[49] M. Mariri, R. Ziaie Moayed, A. Kordnaeij, Stress–Strain Behavior of Loess Soil Stabilized with Cement, Zeolite, and Recycled Polyester Fiber, Journal of Materials in Civil Engineering. 31 (2019). https://doi.org/10.1061/(asce)mt.1943-5533.0002952.
[50] S. Pongsivasathit, S. Horpibulsuk, S. Piyaphipat, Assessment of mechanical properties of cement stabilized soils, Case Studies in Construction Materials. 11 (2019). https://doi.org/10.1016/j.cscm.2019.e00301.
[51] M.B. Revuelta, Construction materials: Geology, production and applications, 2021. http://www.
[52] ’ A Jacques Locat, M.-A. Berube, M. Choquette, Laboratory investigations on the lime stabilizaf’ion ’ of sensitive clays: shear strength development1, 1990. www.nrcresearchpress.com.
[53] I.T. Jawad, M.R. Taha, Z.H. Majeed, T.A. Khan, Soil stabilization using lime: Advantages, disadvantages and proposing a potential alternative, Research Journal of Applied Sciences, Engineering and Technology. 8 (2014) 510–520. https://doi.org/10.19026/rjaset.8.1000.
[54] Y. Cai, B. Shi, C.W.W. Ng, C. sheng Tang, Effect of polypropylene fibre and lime admixture on engineering properties of clayey soil, Eng Geol. 87 (2006) 230–240. https://doi.org/10.1016/j.enggeo.2006.07.007.
[55] S.N. and G.R. Rao, Reaction products formed in lime-stabilized marine clays, Journal of Geotechnical Engineering . (1996).
[56] A.A. Firoozi, C. Guney Olgun, A.A. Firoozi, M.S. Baghini, Fundamentals of soil stabilization, International Journal of Geo-Engineering. 8 (2017). https://doi.org/10.1186/s40703-017-0064-9.
[57] F.G. Bell, Lime stabilization of clay minerals and soils, 1996.
[58] GH Hilt, Lime Fixation in Clayey Soils, 1960.
[59] A.A. Basma, E.R. Tuncer, Effect of Lime on Volume Change and Compressibility of Expansive Clays, Transp Res Rec. (1991).
[60] J.L. Eades, R.E. Grth’, I. Respectively, A Quick Test to Determine Lime Requirements For Lime Stabilization, 1966.
[61] I.I. Obianyo, A.P. Onwualu, A.B.O. Soboyejo, Mechanical behaviour of lateritic soil stabilized with bone ash and hydrated lime for sustainable building applications, Case Studies in Construction Materials. 12 (2020). https://doi.org/10.1016/j.cscm.2020.e00331.
[62] A.K. Jha, P. V. Sivapullaiah, Lime Stabilization of Soil: A Physico-Chemical and Micro-Mechanistic Perspective, Indian Geotechnical Journal. 50 (2020) 339–347. https://doi.org/10.1007/s40098-019-00371-9.
[63] C.S. Tang, L. yang Yin, N. jun Jiang, C. Zhu, H. Zeng, H. Li, B. Shi, Factors affecting the performance of microbial-induced carbonate precipitation (MICP) treated soil: a review, Environ Earth Sci. 79 (2020). https://doi.org/10.1007/s12665-020-8840-9.
[64] S.G. Choi, I. Chang, M. Lee, J.H. Lee, J.T. Han, T.H. Kwon, Review on geotechnical engineering properties of sands treated by microbially induced calcium carbonate precipitation (MICP) and biopolymers, Constr Build Mater. 246 (2020). https://doi.org/10.1016/j.conbuildmat.2020.118415.
[65] J.T. DeJong, B.M. Mortensen, B.C. Martinez, D.C. Nelson, Bio-mediated soil improvement, Ecol Eng. 36 (2010) 197–210. https://doi.org/10.1016/j.ecoleng.2008.12.029.
[66] L. Cheng, R. Cord-Ruwisch, Selective enrichment and production of highly urease active bacteria by non-sterile (open) chemostat culture, J Ind Microbiol Biotechnol. 40 (2013) 1095–1104. https://doi.org/10.1007/s10295-013-1310-6.
[67] M.J. Cui, J.J. Zheng, J. Chu, C.C. Wu, H.J. Lai, Bio-mediated calcium carbonate precipitation and its effect on the shear behaviour of calcareous sand, Acta Geotech. 16 (2021) 1377–1389. https://doi.org/10.1007/s11440-020-01099-0.
[68] T. Meng, Y. Qiang, A. Hu, C. Xu, L. Lin, Effect of compound nano-CaCO3 addition on strength development and microstructure of cement-stabilized soil in the marine environment, Constr Build Mater. 151 (2017) 775–781. https://doi.org/10.1016/j.conbuildmat.2017.06.016.
[69] Z.H. Majeed, M. Raihan Taha, A Review of Stabilization of Soils by using Nanomaterials, Aust J Basic Appl Sci. 7 (2013) 576–581.
[70] W. Li, Z. Huang, F. Cao, Z. Sun, S.P. Shah, Effects of nano-silica and nano-limestone on flowability and mechanical properties of ultra-high-performance concrete matrix, Constr Build Mater. 95 (2015) 366–374. https://doi.org/10.1016/j.conbuildmat.2015.05.137.
[71] S.H. Bahmani, B.B.K. Huat, A. Asadi, N. Farzadnia, Stabilization of residual soil using SiO2 nanoparticles and cement, Constr Build Mater. 64 (2014) 350–359. https://doi.org/10.1016/j.conbuildmat.2014.04.086.
[72] S. Ghadr, C.H. Liu, P. Mrudunayani, C. Hung, Effects of hydrophilic and hydrophobic nanosilica on the hydromechanical behaviors of mudstone soil, Constr Build Mater. 331 (2022). https://doi.org/10.1016/j.conbuildmat.2022.127263.
[73] C.-H. Liu, S. Ghadr, P. Mrudunayani, C. Hung, Synergistic effects of colloidal nanosilica and fiber on the hydromechanical performance of mudstone soil in Taiwan, Acta Geotech. (2023). https://doi.org/10.1007/s11440-023-01969-3.
[74] H. Vidal, The Principle of Reinforced Earth, 1969.
[75] S.M. Hejazi, M. Sheikhzadeh, S.M. Abtahi, A. Zadhoush, A simple review of soil reinforcement by using natural and synthetic fibers, Constr Build Mater. 30 (2012) 100–116. https://doi.org/10.1016/j.conbuildmat.2011.11.045.
[76] R.D. Holtz, Geosynthetics for soil reinforcement, Seattle, Washington. (2001).
[77] S. Jakhar, R. Charkhiya, M. Hooda, An Introduction to Geosynthetics Material, 2018. www.ijert.org.
[78] C.S. Tang, B. Shi, L.Z. Zhao, Interfacial shear strength of fiber reinforced soil, Geotextiles and Geomembranes. 28 (2010) 54–62. https://doi.org/10.1016/j.geotexmem.2009.10.001.
[79] M.H., and D.H.G. Maher, Static response of sands reinforced with randomly distributed fibers, Journal of Geotechnical Engineering . (1990) 1661–1677.
[80] C. Tang, B. Shi, W. Gao, F. Chen, Y. Cai, Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil, Geotextiles and Geomembranes. 25 (2007) 194–202. https://doi.org/10.1016/j.geotexmem.2006.11.002.
[81] O. Plé, T.N.H. Lê, Effect of polypropylene fiber-reinforcement on the mechanical behavior of silty clay, Geotextiles and Geomembranes. 32 (2012) 111–116. https://doi.org/10.1016/j.geotexmem.2011.11.004.
[82] N. dos S.L. Louzada, J.A.C. Malko, M.D.T. Casagrande, Behavior of Clayey Soil Reinforced with Polyethylene Terephthalate, Journal of Materials in Civil Engineering. 31 (2019). https://doi.org/10.1061/(asce)mt.1943-5533.0002863.
[83] E. Botero, A. Ossa, G. Sherwell, E. Ovando-Shelley, Stress-strain behavior of a silty soil reinforced with polyethylene terephthalate (PET), Geotextiles and Geomembranes. 43 (2015) 363–369. https://doi.org/10.1016/j.geotexmem.2015.04.003.
[84] C.H., and M.V.Khire. Benson, Reinforcing sand with strips of reclaimed high-density polyethylene, Journal of Geotechnical Engineering. (1994) 838–855.
[85] S. Rabab’ah, O. Al Hattamleh, H. Aldeeky, B. Abu Alfoul, Effect of glass fiber on the properties of expansive soil and its utilization as subgrade reinforcement in pavement applications, Case Studies in Construction Materials. 14 (2021). https://doi.org/10.1016/j.cscm.2020.e00485.
[86] T.P. Sathishkumar, S. Satheeshkumar, J. Naveen, Glass fiber-reinforced polymer composites - A review, Journal of Reinforced Plastics and Composites. 33 (2014) 1258–1275. https://doi.org/10.1177/0731684414530790.
[87] T.K. Brahmachary, M.K. Ahsan, M. Rokonuzzaman, Impact of rice husk ash (RHA) and nylon fiber on the bearing capacity of organic soil, SN Appl Sci. 1 (2019). https://doi.org/10.1007/s42452-019-0275-0.
[88] B.R. Phanikumar, R. Singla, Swell-consolidation characteristics of fibre-reinforced expansive soils, Soils and Foundations. 56 (2016) 138–143. https://doi.org/10.1016/j.sandf.2016.01.011.
[89] S.S. Park, Effect of fiber reinforcement and distribution on unconfined compressive strength of fiber-reinforced cemented sand, Geotextiles and Geomembranes. 27 (2009) 162–166. https://doi.org/10.1016/j.geotexmem.2008.09.001.
[90] M.J. John, S. Thomas, Biofibres and biocomposites, Carbohydr Polym. 71 (2008) 343–364. https://doi.org/10.1016/j.carbpol.2007.05.040.
[91] J. Ahmad, Z. Zhou, Mechanical Properties of Natural as well as Synthetic Fiber Reinforced Concrete: A Review, Constr Build Mater. 333 (2022). https://doi.org/10.1016/j.conbuildmat.2022.127353.
[92] A.K. Bledzki, J. Gassan, Composites reinforced with cellulose based fibres, 1999.
[93] G.L. Sivakumar Babu, A.K. Vasudevan, Strength and Stiffness Response of Coir Fiber-Reinforced Tropical Soil, Journal of Materials in Civil Engineering. (2008). https://doi.org/10.1061/ASCE0899-1561200820:9571.
[94] M.S. Chauhan, S. Mittal, B. Mohanty, Performance evaluation of silty sand subgrade reinforced with fly ash and fibre, Geotextiles and Geomembranes. 26 (2008) 429–435. https://doi.org/10.1016/j.geotexmem.2008.02.001.
[95] S. Mishra, A.K. Mohanty, L.T. Drzal, M. Misra, G. Hinrichsen, A review on pineapple leaf fibers, sisal fibers and their biocomposites, Macromol Mater Eng. 289 (2004) 955–974. https://doi.org/10.1002/mame.200400132.
[96] S.M. Sapuan, A. Leenie, M. Harimi, Y.K. Beng, Mechanical properties of woven banana fibre reinforced epoxy composites, Mater Des. 27 (2006) 689–693. https://doi.org/10.1016/j.matdes.2004.12.016.
[97] S.M. Marandi, A. Prof, M.H. Bagheripour, R. Rahgozar, H. Zare, Strength and Ductility of Randomly Distributed Palm Fibers Reinforced Silty-Sand Soils 1, Am J Appl Sci. 5 (2008) 209–220.
[98] H. Song, J. Liu, K. He, W. Ahmad, A comprehensive overview of jute fiber reinforced cementitious composites, Case Studies in Construction Materials. 15 (2021). https://doi.org/10.1016/j.cscm.2021.e00724.
[99] J.M.L. Reis, Fracture and flexural characterization of natural fiber-reinforced polymer concrete, Constr Build Mater. 20 (2006) 673–678. https://doi.org/10.1016/j.conbuildmat.2005.02.008.
[100] S. Ghadr, C.S. Chen, C. hsuan Liu, C. Hung, Mechanical behavior of sands reinforced with shredded face masks, Bulletin of Engineering Geology and the Environment. 81 (2022). https://doi.org/10.1007/s10064-022-02810-z.
[101] K. Ghavami, R.D. Toledo, N.P. Barbosac, Cement & Behaviour of composite soil reinforced with natural fibres, 1999.
[102] F. Changizi, A. Haddad, Strength properties of soft clay treated with mixture of nano-SiO2 and recycled polyester fiber, Journal of Rock Mechanics and Geotechnical Engineering. 7 (2015) 367–378. https://doi.org/10.1016/j.jrmge.2015.03.013.
[103] D Hoornweg, What a Waste : A Global Review of Solid Waste Management, Urban Development & Local Government Unit World Bank, Washington. (2012).
[104] N. Jannat, A. Hussien, B. Abdullah, A. Cotgrave, Application of agro and non-agro waste materials for unfired earth blocks construction: A review, Constr Build Mater. 254 (2020). https://doi.org/10.1016/j.conbuildmat.2020.119346.
[105] M. Aamir, Z. Mahmood, A. Nisar, A. Farid, T.A. Khan, M. Abbas, M. Ismaeel, S.A.R. Shah, M. Waseem, Performance evaluation of sustainable soil stabilization process using waste materials, Processes. 7 (2019). https://doi.org/10.3390/PR7060378.
[106] K. Gu, B. Chen, Loess stabilization using cement, waste phosphogypsum, fly ash and quicklime for self-compacting rammed earth construction, Constr Build Mater. 231 (2020). https://doi.org/10.1016/j.conbuildmat.2019.117195.
[107] D. C. Sekhar, S. Nayak, Utilization of granulated blast furnace slag and cement in the manufacture of compressed stabilized earth blocks, Constr Build Mater. 166 (2018) 531–536. https://doi.org/10.1016/j.conbuildmat.2018.01.125.
[108] A.K. Sharma, P. V. Sivapullaiah, Ground granulated blast furnace slag amended fly ash as an expansive soil stabilizer, Soils and Foundations. 56 (2016) 205–212. https://doi.org/10.1016/j.sandf.2016.02.004.
[109] R.S. Sharma, ; B R Phanikumar, B.V. Rao, Engineering Behavior of a Remolded Expansive Clay Blended with Lime, Calcium Chloride, and Rice-Husk Ash, Journal of Materials in Civil Engineering. (2008). https://doi.org/10.1061/ASCE0899-1561200820:8509.
[110] P. Singh, A. Suman, P. Tiwari, N. Arya, A. Gaur, A.K. Shrivastava, Biological pretreatment of sugarcane trash for its conversion to fermentable sugars, World J Microbiol Biotechnol. 24 (2008) 667–673. https://doi.org/10.1007/s11274-007-9522-4.
[111] S. Solomon, Sugarcane By-Products Based Industries in India, Sugar Tech. 13 (2011) 408–416. https://doi.org/10.1007/s12355-011-0114-0.
[112] O.E. Oluwatuyi, B.O. Adeola, E.A. Alhassan, E.S. Nnochiri, A.E. Modupe, O.O. Elemile, T. Obayanju, G. Akerele, Ameliorating effect of milled eggshell on cement stabilized lateritic soil for highway construction, Case Studies in Construction Materials. 9 (2018). https://doi.org/10.1016/j.cscm.2018.e00191.
[113] D. Gupta, A. Kumar, Strength Characterization of Cement Stabilized and Fiber Reinforced Clay–Pond Ash Mixes, International Journal of Geosynthetics and Ground Engineering. 2 (2016). https://doi.org/10.1007/s40891-016-0069-z.
[114] K.Q. Tran, T. Satomi, H. Takahashi, Improvement of mechanical behavior of cemented soil reinforced with waste cornsilk fibers, Constr Build Mater. 178 (2018) 204–210. https://doi.org/10.1016/j.conbuildmat.2018.05.104.
[115] J. James, P.K. Pandian, Geoenvironmental application of sugarcane press mud in lime stabilisation of an expansive soil: a preliminary report, Australian Journal of Civil Engineering. 14 (2016) 114–122. https://doi.org/10.1080/14488353.2017.1316026.
[116] V. Sharma, H.K. Vinayak, B.M. Marwaha, Enhancing compressive strength of soil using natural fibers, Constr Build Mater. 93 (2015) 943–949. https://doi.org/10.1016/j.conbuildmat.2015.05.065.
[117] X. Guo, S. Yuan, Y. Xu, G. Qian, Effects of phosphorus and iron on the composition and property of Portland cement clinker utilized incinerated sewage sludge ash, Constr Build Mater. 341 (2022). https://doi.org/10.1016/j.conbuildmat.2022.127754.
[118] K.L. Lin, D.F. Lin, H.L. Luo, Influence of phosphate of the waste sludge on the hydration characteristics of eco-cement, J Hazard Mater. 168 (2009) 1105–1110. https://doi.org/10.1016/j.jhazmat.2009.02.149.
[119] S. Zhou, X. Li, Y. Zhou, C. Min, Y. Shi, Effect of phosphorus on the properties of phosphogypsum-based cemented backfill, J Hazard Mater. 399 (2020). https://doi.org/10.1016/j.jhazmat.2020.122993.
[120] H. Gadouri, K. Harichane, M. Ghrici, Effect of sulphates and curing period on stress–strain curves and failure modes of soil–lime–natural pozzolana mixtures, Marine Georesources and Geotechnology. 37 (2019) 1130–1148. https://doi.org/10.1080/1064119X.2018.1537321.
[121] O.G. Ingles, J.B. Metcalf, Soil Stabilization: Principles and Practice, Butterworths Pty. Limited, Melbourne. (1972).
[122] L. Lu, Q. Ma, J. Hu, Q. Li, Mechanical properties, curing mechanism, and microscopic experimental study of polypropylene fiber coordinated fly ash modified cement–silty soil, Materials. 14 (2021). https://doi.org/10.3390/ma14185441.
[123] X. Liu, T. Wu, Y. Liu, Stress-strain relationship for plain and fibre-reinforced lightweight aggregate concrete, Constr Build Mater. 225 (2019) 256–272. https://doi.org/10.1016/j.conbuildmat.2019.07.135.
[124] S. Yin, Y. Hou, X. Chen, M. Zhang, H. Du, C. Gao, Mechanical behavior, failure pattern and damage evolution of fiber-reinforced cemented sulfur tailings backfill under uniaxial loading, Constr Build Mater. 332 (2022). https://doi.org/10.1016/j.conbuildmat.2022.127248.
[125] X.L. Duan, J.S. Zhang, Mechanical Properties, Failure Mode, and Microstructure of Soil-Cement Modified with Fly Ash and Polypropylene Fiber, Advances in Materials Science and Engineering. 2019 (2019). https://doi.org/10.1155/2019/9561794.
[126] K. Ghavami, R.D. Toledo, N.P. Barbosac, Behaviour of composite soil reinforced with natural fibres, Cem Concr Compos. 21 (1999) 39–48.
[127] M. Segetin, K. Jayaraman, X. Xu, Harakeke reinforcement of soil-cement building materials: Manufacturability and properties, Build Environ. 42 (2007) 3066–3079. https://doi.org/10.1016/j.buildenv.2006.07.033.
[128] A.R. Estabragh, A.T. Bordbar, A.A. Javadi, A Study on the Mechanical Behavior of a Fiber-Clay Composite with Natural Fiber, Geotechnical and Geological Engineering. 31 (2013) 501–510. https://doi.org/10.1007/s10706-012-9602-6.
[129] A.F. Zidan, Strength and Consolidation Characteristics for Cement Stabilized Cohesive Soil Considering Consistency Index, Geotechnical and Geological Engineering. 38 (2020) 5341–5353. https://doi.org/10.1007/s10706-020-01367-6.
[130] A.R. Estabragh, A.T. Bordbar, A.A. Javadi, Mechanical Behavior of a Clay Soil Reinforced with Nylon Fibers, Geotechnical and Geological Engineering. 29 (2011) 899–908. https://doi.org/10.1007/s10706-011-9427-8.
[131] A.A.B. Moghal, B.C.S. Chittoori, B.M. Basha, A.M. Al-Mahbashi, Effect of polypropylene fibre reinforcement on the consolidation, swell and shrinkage behaviour of lime-blended expansive soil, International Journal of Geotechnical Engineering. 12 (2018) 462–471. https://doi.org/10.1080/19386362.2017.1297002.
[132] S.M. Rao, T. Thyagaraj, H.R. Thomas, Swelling of compacted clay under osmotic gradients, 2006.
[133] M.R. Abdi, A. Parsapajouh, M.A. Arjomand, Effects of Random Fiber Inclusion on Consolidation, Hydraulic Conductivity, Swelling, Shrinkage Limit and Desiccation Cracking of Clays, 2008. www.SID.ir.
[134] S.J. Abbey, E.U. Eyo, S. Ng’ambi, Swell and microstructural characteristics of high-plasticity clay blended with cement, Bulletin of Engineering Geology and the Environment. 79 (2020) 2119–2130. https://doi.org/10.1007/s10064-019-01621-z.
[135] B.V.S. Viswanadham, B.R. Phanikumar, R. V. Mukherjee, Swelling behaviour of a geofiber-reinforced expansive soil, Geotextiles and Geomembranes. 27 (2009) 73–76. https://doi.org/10.1016/j.geotexmem.2008.06.002.
[136] S.K. Dash, M. Hussain, Influence of Lime on Shrinkage Behavior of Soils, (2015). https://doi.org/10.1061/(ASCE)MT.1943-5533.
[137] P.K. Jayasree, K. Balan, L. Peter, K.K. Nisha, Volume Change Behavior of Expansive Soil Stabilized with Coir Waste, Journal of Materials in Civil Engineering. 27 (2015). https://doi.org/10.1061/(asce)mt.1943-5533.0001153.
[138] K. Punthutaecha, ; Anand, J. Puppala, ; Sai, K. Vanapalli, H. Inyang, Volume Change Behaviors of Expansive Soils Stabilized with Recycled Ashes and Fibers, Journal of Materials in Civil Engineering. (2006). https://doi.org/10.1061/ASCE0899-1561200618:2295.
[139] G. Goel, A.S. Kalamdhad, An investigation on use of paper mill sludge in brick manufacturing, Constr Build Mater. 148 (2017) 334–343. https://doi.org/10.1016/j.conbuildmat.2017.05.087.
[140] S.M. Lim, K. Yao, Y. Jiang, Z.C. Lim, I.H. Bakar, Geotechnical characteristics of lateritic clay admixed with biomass silica stabiliser, J Clean Prod. 321 (2021). https://doi.org/10.1016/j.jclepro.2021.129008.
[141] D. C Sekhar, S. Nayak, SEM and XRD investigations on lithomargic clay stabilized using granulated blast furnace slag and cement, International Journal of Geotechnical Engineering. 13 (2019) 615–629. https://doi.org/10.1080/19386362.2017.1380355.
[142] A.A. Al-Rawas, Microfabric and mineralogical studies on the stabilization of an expansive soil using cement by-pass dust and some types of slags, Canadian Geotechnical Journal. 39 (2002) 1150–1167. https://doi.org/10.1139/t02-046.
[143] X. Bao, Y. Huang, Z. Jin, X. Xiao, W. Tang, H. Cui, X. Chen, Experimental investigation on mechanical properties of clay soil reinforced with carbon fiber, Constr Build Mater. 280 (2021). https://doi.org/10.1016/j.conbuildmat.2021.122517.
[144] 林東陞, 加勁紅土在真三軸試驗下的應力應變行為, (2012).
[145] 黃聖棋, 地工織物加勁土壤之承載力影響因子探討-以中大紅土為例, 2014.
[146] 許懷後, A Study on the Unconfined Compression Strength of Layered Slag-Lateritic Soil Mixtures, 2012.
[147] 李家逸, 紅土-高爐石粉複合土壤之工程性質, (2011).
[148] 王建評, 高爐水泥及其摻料對台中紅土之剪力牆度特性改良研究, 2002.
[149] 陳怡蓁, 添加黏土礦物對紅土工程性質之影響, 2011.
[150] 陳堯夫, 細粒料含量對紅土性質的影響, 2016.
[151] 歐立辰, 焚化再生粒料穩定桃園紅土配比設計的控制條件研究, 2019.
校內:2028-08-16公開